地球是原始的富氢行星:假设与现实

IF 0.8 Q4 GEOCHEMISTRY & GEOPHYSICS
А. Pospeev
{"title":"地球是原始的富氢行星:假设与现实","authors":"А. Pospeev","doi":"10.5800/gt-2021-12-3-0543","DOIUrl":null,"url":null,"abstract":"The article is focused on the role of natural hydrogen in the Earth geodynamics and energy potential. With a proper consideration of the physical parameters of the Earth’s core and mantle, we discuss the aspects of the Hydridic Earth (or Primordially Hydrogen-Rich Planet) theory, which is currently used as a fundamental hypothesis in modern projects aimed at hydrogen energetics.A probability of finding natural hydrogen deposits in sedimentary traps is estimated. It is shown that the volume of deep degassing of hydrogen can be calculated from various cosmological, petrophysical and geochemical data, and an average volume is two orders of magnitude less than the amount predicted by the Hydridic Earth hypothesis. This hypothesis gives grounds to conclude that the major part of Earth’s mantle is a metal sphere; however, this conclusion is not supported by the geological and geophysical data.","PeriodicalId":44925,"journal":{"name":"Geodynamics & Tectonophysics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EARTH AS PRIMORDIALLY HYDROGEN-RICH PLANET: HYPOTHESIS AND REALITY\",\"authors\":\"А. Pospeev\",\"doi\":\"10.5800/gt-2021-12-3-0543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article is focused on the role of natural hydrogen in the Earth geodynamics and energy potential. With a proper consideration of the physical parameters of the Earth’s core and mantle, we discuss the aspects of the Hydridic Earth (or Primordially Hydrogen-Rich Planet) theory, which is currently used as a fundamental hypothesis in modern projects aimed at hydrogen energetics.A probability of finding natural hydrogen deposits in sedimentary traps is estimated. It is shown that the volume of deep degassing of hydrogen can be calculated from various cosmological, petrophysical and geochemical data, and an average volume is two orders of magnitude less than the amount predicted by the Hydridic Earth hypothesis. This hypothesis gives grounds to conclude that the major part of Earth’s mantle is a metal sphere; however, this conclusion is not supported by the geological and geophysical data.\",\"PeriodicalId\":44925,\"journal\":{\"name\":\"Geodynamics & Tectonophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodynamics & Tectonophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5800/gt-2021-12-3-0543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodynamics & Tectonophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5800/gt-2021-12-3-0543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文重点介绍了天然氢在地球动力学和能量潜力中的作用。在适当考虑地核和地幔的物理参数的情况下,我们讨论了氢地球(或原始富氢行星)理论的各个方面,该理论目前被用作现代氢能量学项目的基本假设。估计了在沉积圈闭中发现天然氢矿床的可能性。结果表明,利用各种宇宙学、岩石物理和地球化学数据可以计算出深氢脱气的体积,其平均体积比氢化地球假说预测的体积小两个数量级。这一假设使我们有理由得出这样的结论:地幔的主要部分是一个金属球体;然而,这一结论并没有得到地质和地球物理资料的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EARTH AS PRIMORDIALLY HYDROGEN-RICH PLANET: HYPOTHESIS AND REALITY
The article is focused on the role of natural hydrogen in the Earth geodynamics and energy potential. With a proper consideration of the physical parameters of the Earth’s core and mantle, we discuss the aspects of the Hydridic Earth (or Primordially Hydrogen-Rich Planet) theory, which is currently used as a fundamental hypothesis in modern projects aimed at hydrogen energetics.A probability of finding natural hydrogen deposits in sedimentary traps is estimated. It is shown that the volume of deep degassing of hydrogen can be calculated from various cosmological, petrophysical and geochemical data, and an average volume is two orders of magnitude less than the amount predicted by the Hydridic Earth hypothesis. This hypothesis gives grounds to conclude that the major part of Earth’s mantle is a metal sphere; however, this conclusion is not supported by the geological and geophysical data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geodynamics & Tectonophysics
Geodynamics & Tectonophysics GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.20
自引率
14.30%
发文量
95
审稿时长
24 weeks
期刊介绍: The purpose of the journal is facilitating awareness of the international scientific community of new data on geodynamics of continental lithosphere in a wide range of geolchronological data, as well as tectonophysics as an integral part of geodynamics, in which physico-mathematical and structural-geological concepts are applied to deal with topical problems of the evolution of structures and processes taking place simultaneously in the lithosphere. Complex geological and geophysical studies of the Earth tectonosphere have been significantly enhanced in the current decade across the world. As a result, a large number of publications are developed based on thorough analyses of paleo- and modern geodynamic processes with reference to results of properly substantiated physical experiments, field data and tectonophysical calculations. Comprehensive research of that type, followed by consolidation and generalization of research results and conclusions, conforms to the start-of-the-art of the Earth’s sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信