S. Takano, Mao Tsuchiya, S. Imai, Yuhei Yamamoto, Y. Fukami, Katsuhiko Suzuki, Y. Sohrin
{"title":"不同淡水样品中镍、铜和锌的同位素分析,用于来源鉴定","authors":"S. Takano, Mao Tsuchiya, S. Imai, Yuhei Yamamoto, Y. Fukami, Katsuhiko Suzuki, Y. Sohrin","doi":"10.2343/GEOCHEMJ.2.0627","DOIUrl":null,"url":null,"abstract":"Nickel (Ni), copper (Cu), and zinc (Zn) are commonly used in human activities and pollute aquatic environments including rivers and oceans. Recently, Ni, Cu, and Zn isotope ratios have been measured to identify their sources and cycles in environments. We precisely determined the Ni, Cu, and Zn isotope ratios in rain, snow, and rime collected from Uji City and Mt. Kajigamori in Japan, and investigated the potential of isotopic ratios as tracers of anthropogenic materials. The isotope and elemental ratios suggested that road dust is the main source of Cu in most rain, snow, and rime samples and that some of the Cu may originate from fossil fuel combustion. Zinc in the rain, snow, and rime samples may be partially attributed to Zn in road dust. Zinc isotope ratios in the Uji rain samples are lower than those in the road dust, which would be emitted via high temperature processes. Nickel isotope ratios are correlated with V/Ni ratios in the rain, snow, and rime samples, suggesting that their main source is heavy oil combustion. Furthermore, we analyzed water samples from the Uji and Tawara Rivers and the Kakita River spring in Japan. Nickel and Cu isotope ratios in the river water samples were significantly heavier than those in rain, snow, and rime samples, while Zn isotope ratios were similar. This is attributed to isotopic fractionation of Cu and Ni between particulate-dissolved phases in river water or soil.","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":"152 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Isotopic analysis of nickel, copper, and zinc in various freshwater samples for source identification\",\"authors\":\"S. Takano, Mao Tsuchiya, S. Imai, Yuhei Yamamoto, Y. Fukami, Katsuhiko Suzuki, Y. Sohrin\",\"doi\":\"10.2343/GEOCHEMJ.2.0627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nickel (Ni), copper (Cu), and zinc (Zn) are commonly used in human activities and pollute aquatic environments including rivers and oceans. Recently, Ni, Cu, and Zn isotope ratios have been measured to identify their sources and cycles in environments. We precisely determined the Ni, Cu, and Zn isotope ratios in rain, snow, and rime collected from Uji City and Mt. Kajigamori in Japan, and investigated the potential of isotopic ratios as tracers of anthropogenic materials. The isotope and elemental ratios suggested that road dust is the main source of Cu in most rain, snow, and rime samples and that some of the Cu may originate from fossil fuel combustion. Zinc in the rain, snow, and rime samples may be partially attributed to Zn in road dust. Zinc isotope ratios in the Uji rain samples are lower than those in the road dust, which would be emitted via high temperature processes. Nickel isotope ratios are correlated with V/Ni ratios in the rain, snow, and rime samples, suggesting that their main source is heavy oil combustion. Furthermore, we analyzed water samples from the Uji and Tawara Rivers and the Kakita River spring in Japan. Nickel and Cu isotope ratios in the river water samples were significantly heavier than those in rain, snow, and rime samples, while Zn isotope ratios were similar. This is attributed to isotopic fractionation of Cu and Ni between particulate-dissolved phases in river water or soil.\",\"PeriodicalId\":12682,\"journal\":{\"name\":\"Geochemical Journal\",\"volume\":\"152 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemical Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2343/GEOCHEMJ.2.0627\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemical Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2343/GEOCHEMJ.2.0627","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Isotopic analysis of nickel, copper, and zinc in various freshwater samples for source identification
Nickel (Ni), copper (Cu), and zinc (Zn) are commonly used in human activities and pollute aquatic environments including rivers and oceans. Recently, Ni, Cu, and Zn isotope ratios have been measured to identify their sources and cycles in environments. We precisely determined the Ni, Cu, and Zn isotope ratios in rain, snow, and rime collected from Uji City and Mt. Kajigamori in Japan, and investigated the potential of isotopic ratios as tracers of anthropogenic materials. The isotope and elemental ratios suggested that road dust is the main source of Cu in most rain, snow, and rime samples and that some of the Cu may originate from fossil fuel combustion. Zinc in the rain, snow, and rime samples may be partially attributed to Zn in road dust. Zinc isotope ratios in the Uji rain samples are lower than those in the road dust, which would be emitted via high temperature processes. Nickel isotope ratios are correlated with V/Ni ratios in the rain, snow, and rime samples, suggesting that their main source is heavy oil combustion. Furthermore, we analyzed water samples from the Uji and Tawara Rivers and the Kakita River spring in Japan. Nickel and Cu isotope ratios in the river water samples were significantly heavier than those in rain, snow, and rime samples, while Zn isotope ratios were similar. This is attributed to isotopic fractionation of Cu and Ni between particulate-dissolved phases in river water or soil.
期刊介绍:
Geochemical Journal is an international journal devoted to original research papers in geochemistry and cosmochemistry. It is the primary journal of the Geochemical Society of Japan. Areas of research are as follows:
Cosmochemistry; Mineral and Rock Chemistry; Volcanology and Hydrothermal Chemistry; Isotope Geochemistry and Geochronology; Atmospheric Chemistry; Hydro- and Marine Chemistry; Organic Geochemistry; Environmental Chemistry.