基于声振综合调制技术的多螺栓松动监测

Minghao Chen, Yanfeng Shen
{"title":"基于声振综合调制技术的多螺栓松动监测","authors":"Minghao Chen, Yanfeng Shen","doi":"10.1115/imece2021-70345","DOIUrl":null,"url":null,"abstract":"\n This paper proposed an integrated vibro-acoustic modulation method (IVAM) for multi-bolt loosening monitoring. Numerical simulations and experiments of a single bolt model are initially conducted to illuminate the contact acoustic nonlinearity (CAN) and vibro-acoustic modulation (VAM) phenomenon. The finite element model considers the coupled field effects and the contact interface of the bolted joint. A pumping wave with a certain low frequency combined with a probing signal sweeping through the frequency range of 50 kHz to 100 kHz was implemented and verified to effectively trigger VAM on the bolted connection. A comprehensive damage index (CDI) associated with the linear energy and nonlinear CAN change due to the bolt looseness is then proposed to evaluate bolt looseness in a full life cycle. For further study, IVAM is applied on a complex multi-bolt connection part to locate and identify the loosened bolts. Several cases are investigated to analyze its performance. An intelligent self-verification mechanism is used to ensure the accuracy of the results. The proposed IVAM method with an outcome CDI matrix possesses great application potential for multi-bolt connection monitoring with high sensitivity and accuracy. This paper finishes with summary, concluding remarks, and suggestions for future work.","PeriodicalId":23585,"journal":{"name":"Volume 7A: Dynamics, Vibration, and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Bolt Loosening Monitoring Using an Integrated Vibro-Acoustic Modulation Technique\",\"authors\":\"Minghao Chen, Yanfeng Shen\",\"doi\":\"10.1115/imece2021-70345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper proposed an integrated vibro-acoustic modulation method (IVAM) for multi-bolt loosening monitoring. Numerical simulations and experiments of a single bolt model are initially conducted to illuminate the contact acoustic nonlinearity (CAN) and vibro-acoustic modulation (VAM) phenomenon. The finite element model considers the coupled field effects and the contact interface of the bolted joint. A pumping wave with a certain low frequency combined with a probing signal sweeping through the frequency range of 50 kHz to 100 kHz was implemented and verified to effectively trigger VAM on the bolted connection. A comprehensive damage index (CDI) associated with the linear energy and nonlinear CAN change due to the bolt looseness is then proposed to evaluate bolt looseness in a full life cycle. For further study, IVAM is applied on a complex multi-bolt connection part to locate and identify the loosened bolts. Several cases are investigated to analyze its performance. An intelligent self-verification mechanism is used to ensure the accuracy of the results. The proposed IVAM method with an outcome CDI matrix possesses great application potential for multi-bolt connection monitoring with high sensitivity and accuracy. This paper finishes with summary, concluding remarks, and suggestions for future work.\",\"PeriodicalId\":23585,\"journal\":{\"name\":\"Volume 7A: Dynamics, Vibration, and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7A: Dynamics, Vibration, and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2021-70345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7A: Dynamics, Vibration, and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-70345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于多锚杆松动监测的综合振声调制方法(IVAM)。为了阐明接触声非线性(CAN)和振声调制(VAM)现象,对单螺栓模型进行了初步的数值模拟和实验。有限元模型考虑了耦合场效应和螺栓连接接触界面。采用一定低频的泵送波结合扫描频率范围为50 kHz至100 kHz的探测信号,在螺栓连接上有效触发VAM。在此基础上,提出了一种与锚杆松动引起的线性能量和非线性CAN变化相关联的综合损伤指数(CDI),用于评价锚杆全寿命周期的松动程度。为了进一步研究,将IVAM应用于复杂的多螺栓连接部件,以定位和识别松动的螺栓。通过实例分析了其性能。采用智能自验证机制,确保结果的准确性。该方法具有输出CDI矩阵,在多螺栓连接监测中具有较高的灵敏度和精度,具有较大的应用潜力。最后对全文进行了总结、结束语和对今后工作的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Bolt Loosening Monitoring Using an Integrated Vibro-Acoustic Modulation Technique
This paper proposed an integrated vibro-acoustic modulation method (IVAM) for multi-bolt loosening monitoring. Numerical simulations and experiments of a single bolt model are initially conducted to illuminate the contact acoustic nonlinearity (CAN) and vibro-acoustic modulation (VAM) phenomenon. The finite element model considers the coupled field effects and the contact interface of the bolted joint. A pumping wave with a certain low frequency combined with a probing signal sweeping through the frequency range of 50 kHz to 100 kHz was implemented and verified to effectively trigger VAM on the bolted connection. A comprehensive damage index (CDI) associated with the linear energy and nonlinear CAN change due to the bolt looseness is then proposed to evaluate bolt looseness in a full life cycle. For further study, IVAM is applied on a complex multi-bolt connection part to locate and identify the loosened bolts. Several cases are investigated to analyze its performance. An intelligent self-verification mechanism is used to ensure the accuracy of the results. The proposed IVAM method with an outcome CDI matrix possesses great application potential for multi-bolt connection monitoring with high sensitivity and accuracy. This paper finishes with summary, concluding remarks, and suggestions for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信