基于计算智能的软件可靠性方法

Tamanna, O. Sangwan
{"title":"基于计算智能的软件可靠性方法","authors":"Tamanna, O. Sangwan","doi":"10.1109/CONFLUENCE.2017.7943144","DOIUrl":null,"url":null,"abstract":"Accurate software reliability prediction with a single universal software reliability growth model is very difficult. In this ρ aper we reviewed different models which uses computational intelligence for the prediction purpose and describe how these techniques outperform conventional statistical models. Parameters, efficacy measures with methodologies are concluded in tabular form.","PeriodicalId":6651,"journal":{"name":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","volume":"108 1","pages":"171-176"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational intelligence based approaches to software reliability\",\"authors\":\"Tamanna, O. Sangwan\",\"doi\":\"10.1109/CONFLUENCE.2017.7943144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate software reliability prediction with a single universal software reliability growth model is very difficult. In this ρ aper we reviewed different models which uses computational intelligence for the prediction purpose and describe how these techniques outperform conventional statistical models. Parameters, efficacy measures with methodologies are concluded in tabular form.\",\"PeriodicalId\":6651,\"journal\":{\"name\":\"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence\",\"volume\":\"108 1\",\"pages\":\"171-176\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONFLUENCE.2017.7943144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2017.7943144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用单一的通用软件可靠性增长模型进行准确的软件可靠性预测是非常困难的。在这篇论文中,我们回顾了使用计算智能进行预测的不同模型,并描述了这些技术如何优于传统的统计模型。以表格形式总结了参数、疗效指标和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational intelligence based approaches to software reliability
Accurate software reliability prediction with a single universal software reliability growth model is very difficult. In this ρ aper we reviewed different models which uses computational intelligence for the prediction purpose and describe how these techniques outperform conventional statistical models. Parameters, efficacy measures with methodologies are concluded in tabular form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信