扩散过程不变测度的稳定性估计,及其在矩测度和斯坦核稳定性中的应用

M. Fathi, Dan Mikulincer
{"title":"扩散过程不变测度的稳定性估计,及其在矩测度和斯坦核稳定性中的应用","authors":"M. Fathi, Dan Mikulincer","doi":"10.2422/2036-2145.202011_016","DOIUrl":null,"url":null,"abstract":"We investigate stability of invariant measures of diffusion processes with respect to $L^p$ distances on the coefficients, under an assumption of log-concavity. The method is a variant of a technique introduced by Crippa and De Lellis to study transport equations. As an application, we prove a partial extension of an inequality of Ledoux, Nourdin and Peccati relating transport distances and Stein discrepancies to a non-Gaussian setting via the moment map construction of Stein kernels.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stability estimates for invariant measures of diffusion processes, with applications to stability of moment measures and Stein kernels\",\"authors\":\"M. Fathi, Dan Mikulincer\",\"doi\":\"10.2422/2036-2145.202011_016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate stability of invariant measures of diffusion processes with respect to $L^p$ distances on the coefficients, under an assumption of log-concavity. The method is a variant of a technique introduced by Crippa and De Lellis to study transport equations. As an application, we prove a partial extension of an inequality of Ledoux, Nourdin and Peccati relating transport distances and Stein discrepancies to a non-Gaussian setting via the moment map construction of Stein kernels.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202011_016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202011_016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在对数凹性假设下,研究了扩散过程的不变测度在系数上关于L^p$距离的稳定性。该方法是Crippa和De Lellis引入的一种研究输运方程的技术的变体。作为应用,我们通过构造Stein核的矩映射,证明了Ledoux, Nourdin和Peccati关于输运距离和Stein差异的不等式在非高斯环境下的部分推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability estimates for invariant measures of diffusion processes, with applications to stability of moment measures and Stein kernels
We investigate stability of invariant measures of diffusion processes with respect to $L^p$ distances on the coefficients, under an assumption of log-concavity. The method is a variant of a technique introduced by Crippa and De Lellis to study transport equations. As an application, we prove a partial extension of an inequality of Ledoux, Nourdin and Peccati relating transport distances and Stein discrepancies to a non-Gaussian setting via the moment map construction of Stein kernels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信