{"title":"扩散过程不变测度的稳定性估计,及其在矩测度和斯坦核稳定性中的应用","authors":"M. Fathi, Dan Mikulincer","doi":"10.2422/2036-2145.202011_016","DOIUrl":null,"url":null,"abstract":"We investigate stability of invariant measures of diffusion processes with respect to $L^p$ distances on the coefficients, under an assumption of log-concavity. The method is a variant of a technique introduced by Crippa and De Lellis to study transport equations. As an application, we prove a partial extension of an inequality of Ledoux, Nourdin and Peccati relating transport distances and Stein discrepancies to a non-Gaussian setting via the moment map construction of Stein kernels.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stability estimates for invariant measures of diffusion processes, with applications to stability of moment measures and Stein kernels\",\"authors\":\"M. Fathi, Dan Mikulincer\",\"doi\":\"10.2422/2036-2145.202011_016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate stability of invariant measures of diffusion processes with respect to $L^p$ distances on the coefficients, under an assumption of log-concavity. The method is a variant of a technique introduced by Crippa and De Lellis to study transport equations. As an application, we prove a partial extension of an inequality of Ledoux, Nourdin and Peccati relating transport distances and Stein discrepancies to a non-Gaussian setting via the moment map construction of Stein kernels.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202011_016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202011_016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability estimates for invariant measures of diffusion processes, with applications to stability of moment measures and Stein kernels
We investigate stability of invariant measures of diffusion processes with respect to $L^p$ distances on the coefficients, under an assumption of log-concavity. The method is a variant of a technique introduced by Crippa and De Lellis to study transport equations. As an application, we prove a partial extension of an inequality of Ledoux, Nourdin and Peccati relating transport distances and Stein discrepancies to a non-Gaussian setting via the moment map construction of Stein kernels.