基于视觉的生理和情绪信号分析及其在精神障碍诊断中的应用

Hu Han
{"title":"基于视觉的生理和情绪信号分析及其在精神障碍诊断中的应用","authors":"Hu Han","doi":"10.1145/3552465.3554164","DOIUrl":null,"url":null,"abstract":"Face images and videos contain rich visual biometric signals from apparent signals like attribute and identity characteristics to subtle signals corresponding to physiological and emotional states. Benefit from the great success of deep learning methods, tremendous progress has been made on apparent visual signals analysis. However, subtle signal analysis still faces big challenges: indistinguishable pattern, low PSNR, and transient duration. Attempts to resolve these challenges usually rely on engineering designs to extract and enhance the subtle signals. Our recent work aims to improve the robustness of physiological and emotional signal analysis via signal disentanglement, context modeling, and semi-supervised learning. Since people with mental disorders is likely to demonstrate subtle visual signals, we also propose to fuse individual face visual signals to perform mental disorder diagnosis like AD apathy and anxiety prediction.","PeriodicalId":64586,"journal":{"name":"新华航空","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vision based Physiological and Emotional Signal Analysis with Application to Mental Disorder Diagnosis\",\"authors\":\"Hu Han\",\"doi\":\"10.1145/3552465.3554164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face images and videos contain rich visual biometric signals from apparent signals like attribute and identity characteristics to subtle signals corresponding to physiological and emotional states. Benefit from the great success of deep learning methods, tremendous progress has been made on apparent visual signals analysis. However, subtle signal analysis still faces big challenges: indistinguishable pattern, low PSNR, and transient duration. Attempts to resolve these challenges usually rely on engineering designs to extract and enhance the subtle signals. Our recent work aims to improve the robustness of physiological and emotional signal analysis via signal disentanglement, context modeling, and semi-supervised learning. Since people with mental disorders is likely to demonstrate subtle visual signals, we also propose to fuse individual face visual signals to perform mental disorder diagnosis like AD apathy and anxiety prediction.\",\"PeriodicalId\":64586,\"journal\":{\"name\":\"新华航空\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"新华航空\",\"FirstCategoryId\":\"1094\",\"ListUrlMain\":\"https://doi.org/10.1145/3552465.3554164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"新华航空","FirstCategoryId":"1094","ListUrlMain":"https://doi.org/10.1145/3552465.3554164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人脸图像和视频包含丰富的视觉生物特征信号,既有属性、身份特征等明显信号,也有生理、情绪状态等微妙信号。得益于深度学习方法的巨大成功,表观视觉信号分析取得了巨大进展。然而,微妙信号分析仍然面临着难以区分的模式、低PSNR和瞬态持续时间等巨大挑战。解决这些挑战的尝试通常依赖于工程设计来提取和增强微妙的信号。我们最近的工作旨在通过信号解缠、情境建模和半监督学习来提高生理和情绪信号分析的鲁棒性。由于精神障碍患者可能表现出微妙的视觉信号,我们也建议融合个体面部视觉信号来进行AD冷漠和焦虑预测等精神障碍诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vision based Physiological and Emotional Signal Analysis with Application to Mental Disorder Diagnosis
Face images and videos contain rich visual biometric signals from apparent signals like attribute and identity characteristics to subtle signals corresponding to physiological and emotional states. Benefit from the great success of deep learning methods, tremendous progress has been made on apparent visual signals analysis. However, subtle signal analysis still faces big challenges: indistinguishable pattern, low PSNR, and transient duration. Attempts to resolve these challenges usually rely on engineering designs to extract and enhance the subtle signals. Our recent work aims to improve the robustness of physiological and emotional signal analysis via signal disentanglement, context modeling, and semi-supervised learning. Since people with mental disorders is likely to demonstrate subtle visual signals, we also propose to fuse individual face visual signals to perform mental disorder diagnosis like AD apathy and anxiety prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
2744
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信