基于视觉的工业装配环境故障识别统计学习系统

Z. Viharos, D. Chetverikov, A. Háry, Ramóna Sóghegyi, A. Barta, László Zalányi, I. Pomozi, Sz Soós, Zsolt Kövér, Balázs Varjú
{"title":"基于视觉的工业装配环境故障识别统计学习系统","authors":"Z. Viharos, D. Chetverikov, A. Háry, Ramóna Sóghegyi, A. Barta, László Zalányi, I. Pomozi, Sz Soós, Zsolt Kövér, Balázs Varjú","doi":"10.1109/ETFA.2016.7733730","DOIUrl":null,"url":null,"abstract":"The paper presents a statistical learning system based visual solution developed and applied for fault detection in industrial environment. As a mobile vision system the area of use was the automatic detection of rare faults in complex assembled objects. The object detection, the fore- and background separation, and the multi-model database enables the system to manage irregular batches of the different objects. A multi-model database guarantees that the object is compared with the statistically most relevant model, therefore it reduces the number of false alarms. The developed system is able to detect faults with the size of 2% of the total picture based on previously learned models.","PeriodicalId":6483,"journal":{"name":"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"90 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Vision based, statistical learning system for fault recognition in industrial assembly environment\",\"authors\":\"Z. Viharos, D. Chetverikov, A. Háry, Ramóna Sóghegyi, A. Barta, László Zalányi, I. Pomozi, Sz Soós, Zsolt Kövér, Balázs Varjú\",\"doi\":\"10.1109/ETFA.2016.7733730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a statistical learning system based visual solution developed and applied for fault detection in industrial environment. As a mobile vision system the area of use was the automatic detection of rare faults in complex assembled objects. The object detection, the fore- and background separation, and the multi-model database enables the system to manage irregular batches of the different objects. A multi-model database guarantees that the object is compared with the statistically most relevant model, therefore it reduces the number of false alarms. The developed system is able to detect faults with the size of 2% of the total picture based on previously learned models.\",\"PeriodicalId\":6483,\"journal\":{\"name\":\"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":\"90 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2016.7733730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2016.7733730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于统计学习系统的可视化解决方案,并将其应用于工业环境下的故障检测。作为一种移动视觉系统,其应用领域是对复杂装配物体中罕见故障的自动检测。目标检测、前背景分离和多模型数据库使系统能够对不同目标的不规则批次进行管理。多模型数据库保证了对象与统计上最相关的模型进行比较,因此减少了假警报的数量。基于先前学习的模型,开发的系统能够检测出总图像大小为2%的故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vision based, statistical learning system for fault recognition in industrial assembly environment
The paper presents a statistical learning system based visual solution developed and applied for fault detection in industrial environment. As a mobile vision system the area of use was the automatic detection of rare faults in complex assembled objects. The object detection, the fore- and background separation, and the multi-model database enables the system to manage irregular batches of the different objects. A multi-model database guarantees that the object is compared with the statistically most relevant model, therefore it reduces the number of false alarms. The developed system is able to detect faults with the size of 2% of the total picture based on previously learned models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信