标准细胞库符合工艺密度约束的预放置评估

Digvijay Rajurkar, Sivakumar Venkataraman
{"title":"标准细胞库符合工艺密度约束的预放置评估","authors":"Digvijay Rajurkar, Sivakumar Venkataraman","doi":"10.1109/MWSCAS47672.2021.9531884","DOIUrl":null,"url":null,"abstract":"Improving design manufacturability and yield requires microchip designs to satisfy process density constraints for pre-defined windows in the die. Iterations in DFM convergence poses a key challenge to physical verification which heavily depends on the compliance of standard cell library to process density requirements. The proposed novel technique involves training a classifier model using supervised reinforced learning to evaluate layer wise density margin as a function of cell area, process window overlaps and usage at block-level thus facilitating ease of use. Process density compliance is analyzed for library offerings on Intel 10nm node demonstrating 85% success in predicting failing cells","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"71 1","pages":"236-240"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pre-placement evaluation of Standard Cell Library compliance to Process Density constraints\",\"authors\":\"Digvijay Rajurkar, Sivakumar Venkataraman\",\"doi\":\"10.1109/MWSCAS47672.2021.9531884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving design manufacturability and yield requires microchip designs to satisfy process density constraints for pre-defined windows in the die. Iterations in DFM convergence poses a key challenge to physical verification which heavily depends on the compliance of standard cell library to process density requirements. The proposed novel technique involves training a classifier model using supervised reinforced learning to evaluate layer wise density margin as a function of cell area, process window overlaps and usage at block-level thus facilitating ease of use. Process density compliance is analyzed for library offerings on Intel 10nm node demonstrating 85% success in predicting failing cells\",\"PeriodicalId\":6792,\"journal\":{\"name\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"71 1\",\"pages\":\"236-240\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS47672.2021.9531884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提高设计的可制造性和良率要求微芯片设计满足模具中预定义窗口的工艺密度约束。DFM收敛中的迭代对物理验证提出了关键挑战,这在很大程度上取决于标准单元库对过程密度要求的遵从性。提出的新技术包括使用监督强化学习来训练分类器模型,以评估分层密度裕度作为单元面积,过程窗口重叠和块级使用的函数,从而促进易用性。对英特尔10nm节点上的库产品的工艺密度遵从性进行了分析,结果显示,预测失效单元的成功率为85%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pre-placement evaluation of Standard Cell Library compliance to Process Density constraints
Improving design manufacturability and yield requires microchip designs to satisfy process density constraints for pre-defined windows in the die. Iterations in DFM convergence poses a key challenge to physical verification which heavily depends on the compliance of standard cell library to process density requirements. The proposed novel technique involves training a classifier model using supervised reinforced learning to evaluate layer wise density margin as a function of cell area, process window overlaps and usage at block-level thus facilitating ease of use. Process density compliance is analyzed for library offerings on Intel 10nm node demonstrating 85% success in predicting failing cells
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信