Dennis和Schnabel对牛顿方法的一个局部收敛结果的推广及其应用

IF 0.9 Q3 MATHEMATICS, APPLIED
Ioannis K. Argyros, Michael Argyros, Johan Ceballos, Mariana Ceballos, Daniel González
{"title":"Dennis和Schnabel对牛顿方法的一个局部收敛结果的推广及其应用","authors":"Ioannis K. Argyros,&nbsp;Michael Argyros,&nbsp;Johan Ceballos,&nbsp;Mariana Ceballos,&nbsp;Daniel González","doi":"10.1002/cmm4.1179","DOIUrl":null,"url":null,"abstract":"<p>The aim of this article is to extend the applicability of Newton's method involving <i>k</i>-Fréchet differentiable operators. By using tighter majorizing functions and under the same computational cost as in earlier works, we find at least as large radius of convergence and at least as tighter error bounds on the distances involved. Numerical examples further validate the theoretical results.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 5","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1179","citationCount":"0","resultStr":"{\"title\":\"Extensions on a local convergence result by Dennis and Schnabel for Newton's method with applications\",\"authors\":\"Ioannis K. Argyros,&nbsp;Michael Argyros,&nbsp;Johan Ceballos,&nbsp;Mariana Ceballos,&nbsp;Daniel González\",\"doi\":\"10.1002/cmm4.1179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this article is to extend the applicability of Newton's method involving <i>k</i>-Fréchet differentiable operators. By using tighter majorizing functions and under the same computational cost as in earlier works, we find at least as large radius of convergence and at least as tighter error bounds on the distances involved. Numerical examples further validate the theoretical results.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"3 5\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cmm4.1179\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是推广涉及k- fr可微算子的牛顿方法的适用性。通过使用更严格的多数化函数,在与早期工作相同的计算成本下,我们发现至少有同样大的收敛半径和至少更严格的距离误差界。数值算例进一步验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extensions on a local convergence result by Dennis and Schnabel for Newton's method with applications

The aim of this article is to extend the applicability of Newton's method involving k-Fréchet differentiable operators. By using tighter majorizing functions and under the same computational cost as in earlier works, we find at least as large radius of convergence and at least as tighter error bounds on the distances involved. Numerical examples further validate the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信