光学频率梳噪声表征使用机器学习

Giovanni Brajato, Lars Lundberg, V. Torres‐Company, D. Zibar
{"title":"光学频率梳噪声表征使用机器学习","authors":"Giovanni Brajato, Lars Lundberg, V. Torres‐Company, D. Zibar","doi":"10.1049/cp.2019.0889","DOIUrl":null,"url":null,"abstract":"A novel tool, based on Bayesian filtering framework and expectation maximization algorithm, is numerically and experimentally demonstrated for accurate frequency comb noise characterization. The tool is statistically optimum in a mean-square-error-sense, works at wide range of SNRs and offers more accurate noise estimation compared to conventional methods.","PeriodicalId":6826,"journal":{"name":"45th European Conference on Optical Communication (ECOC 2019)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optical frequency comb noise characterization using machine learning\",\"authors\":\"Giovanni Brajato, Lars Lundberg, V. Torres‐Company, D. Zibar\",\"doi\":\"10.1049/cp.2019.0889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel tool, based on Bayesian filtering framework and expectation maximization algorithm, is numerically and experimentally demonstrated for accurate frequency comb noise characterization. The tool is statistically optimum in a mean-square-error-sense, works at wide range of SNRs and offers more accurate noise estimation compared to conventional methods.\",\"PeriodicalId\":6826,\"journal\":{\"name\":\"45th European Conference on Optical Communication (ECOC 2019)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"45th European Conference on Optical Communication (ECOC 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/cp.2019.0889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"45th European Conference on Optical Communication (ECOC 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/cp.2019.0889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基于贝叶斯滤波框架和期望最大化算法,通过数值和实验验证了一种新的频率梳噪声表征方法。与传统方法相比,该工具在均方误差意义上具有统计最佳性,可在宽信噪比范围内工作,并提供更准确的噪声估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical frequency comb noise characterization using machine learning
A novel tool, based on Bayesian filtering framework and expectation maximization algorithm, is numerically and experimentally demonstrated for accurate frequency comb noise characterization. The tool is statistically optimum in a mean-square-error-sense, works at wide range of SNRs and offers more accurate noise estimation compared to conventional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信