{"title":"通过Weingarten微积分得到的有限自由卷积","authors":"J. Campbell, Z. Yin","doi":"10.1142/S2010326321500386","DOIUrl":null,"url":null,"abstract":"We consider the three finite free convolutions for polynomials studied in a recent paper by Marcus, Spielman and Srivastava. Each can be described either by direct explicit formulae or in terms of operations on randomly rotated matrices. We present an alternate approach to the equivalence between these descriptions, based on combinatorial Weingarten methods for integration over the unitary and orthogonal groups. A key aspect of our approach is to identify a certain quadrature property, which is satisfied by some important series of subgroups of the unitary groups (including the groups of unitary, orthogonal, and signed permutation matrices), and which yields the desired convolution formulae.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Finite free convolutions via Weingarten calculus\",\"authors\":\"J. Campbell, Z. Yin\",\"doi\":\"10.1142/S2010326321500386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the three finite free convolutions for polynomials studied in a recent paper by Marcus, Spielman and Srivastava. Each can be described either by direct explicit formulae or in terms of operations on randomly rotated matrices. We present an alternate approach to the equivalence between these descriptions, based on combinatorial Weingarten methods for integration over the unitary and orthogonal groups. A key aspect of our approach is to identify a certain quadrature property, which is satisfied by some important series of subgroups of the unitary groups (including the groups of unitary, orthogonal, and signed permutation matrices), and which yields the desired convolution formulae.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010326321500386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326321500386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider the three finite free convolutions for polynomials studied in a recent paper by Marcus, Spielman and Srivastava. Each can be described either by direct explicit formulae or in terms of operations on randomly rotated matrices. We present an alternate approach to the equivalence between these descriptions, based on combinatorial Weingarten methods for integration over the unitary and orthogonal groups. A key aspect of our approach is to identify a certain quadrature property, which is satisfied by some important series of subgroups of the unitary groups (including the groups of unitary, orthogonal, and signed permutation matrices), and which yields the desired convolution formulae.