Taeju Lee, Jee-Ho Park, Ji-Hyoung Cha, Namsun Chou, Doojin Jang, Ji-Hoon Kim, Il-Joo Cho, Seong-Jin Kim, M. Je
{"title":"基于荧光记录和电记录的0.7μW/通道Ca2+探针多模态多通道神经活动读出IC","authors":"Taeju Lee, Jee-Ho Park, Ji-Hyoung Cha, Namsun Chou, Doojin Jang, Ji-Hoon Kim, Il-Joo Cho, Seong-Jin Kim, M. Je","doi":"10.23919/VLSIC.2019.8778042","DOIUrl":null,"url":null,"abstract":"This paper presents a multimodal multichannel neural activity readout IC which can perform not only the electrical recording (ER) but also the fluorescence recording (FR) of neural activity for the cell-type-specific study of heterogeneous neuronal cell populations. The time-based FR circuit senses Ca2+ concentration using Ca2+ probes while the ER circuit acquires action potentials (APs) and local field potentials (LFPs). The IC is fabricated in 0.18μm CMOS. The FR circuit achieves a recording range of 81dB (75pA to 860nA) and consumes the power of 0.7μmW/Ch. The ER circuit achieves the input-referred noise (IRN) of 2.7μm Vrms over the bandwidth (BW) of 10kHz, while consuming the power of 4.9μmW/Ch. The in-vitro measurement is performed for recording Ca2+ concentration and electrical neural signals.","PeriodicalId":6707,"journal":{"name":"2019 Symposium on VLSI Circuits","volume":"32 1","pages":"C290-C291"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Multimodal Multichannel Neural Activity Readout IC with 0.7μW/Channel Ca2+-Probe-Based Fluorescence Recording and Electrical Recording\",\"authors\":\"Taeju Lee, Jee-Ho Park, Ji-Hyoung Cha, Namsun Chou, Doojin Jang, Ji-Hoon Kim, Il-Joo Cho, Seong-Jin Kim, M. Je\",\"doi\":\"10.23919/VLSIC.2019.8778042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a multimodal multichannel neural activity readout IC which can perform not only the electrical recording (ER) but also the fluorescence recording (FR) of neural activity for the cell-type-specific study of heterogeneous neuronal cell populations. The time-based FR circuit senses Ca2+ concentration using Ca2+ probes while the ER circuit acquires action potentials (APs) and local field potentials (LFPs). The IC is fabricated in 0.18μm CMOS. The FR circuit achieves a recording range of 81dB (75pA to 860nA) and consumes the power of 0.7μmW/Ch. The ER circuit achieves the input-referred noise (IRN) of 2.7μm Vrms over the bandwidth (BW) of 10kHz, while consuming the power of 4.9μmW/Ch. The in-vitro measurement is performed for recording Ca2+ concentration and electrical neural signals.\",\"PeriodicalId\":6707,\"journal\":{\"name\":\"2019 Symposium on VLSI Circuits\",\"volume\":\"32 1\",\"pages\":\"C290-C291\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIC.2019.8778042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIC.2019.8778042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Multimodal Multichannel Neural Activity Readout IC with 0.7μW/Channel Ca2+-Probe-Based Fluorescence Recording and Electrical Recording
This paper presents a multimodal multichannel neural activity readout IC which can perform not only the electrical recording (ER) but also the fluorescence recording (FR) of neural activity for the cell-type-specific study of heterogeneous neuronal cell populations. The time-based FR circuit senses Ca2+ concentration using Ca2+ probes while the ER circuit acquires action potentials (APs) and local field potentials (LFPs). The IC is fabricated in 0.18μm CMOS. The FR circuit achieves a recording range of 81dB (75pA to 860nA) and consumes the power of 0.7μmW/Ch. The ER circuit achieves the input-referred noise (IRN) of 2.7μm Vrms over the bandwidth (BW) of 10kHz, while consuming the power of 4.9μmW/Ch. The in-vitro measurement is performed for recording Ca2+ concentration and electrical neural signals.