具有跳跃的随机捕食者种群密度依赖的捕食者-食饵模型的灭绝和持续

O. Borysenko, O. Borysenko
{"title":"具有跳跃的随机捕食者种群密度依赖的捕食者-食饵模型的灭绝和持续","authors":"O. Borysenko, O. Borysenko","doi":"10.17721/1812-5409.2023/1.4","DOIUrl":null,"url":null,"abstract":"The non-autonomous stochastic density dependent predator-prey model with Holling-type II functional response disturbed by white noise, centered and non-centered Poisson noises is investigated. Corresponding system of stochastic differential equations has a unique, positive, global (no explosions in a finite time) solution. Sufficient conditions are obtained for extinction, non-persistence in the mean, weak and strong persistence in the mean of a predator and prey population densities in the considered stochastic predator-prey model.","PeriodicalId":33822,"journal":{"name":"Visnik Kiivs''kij nacional''nij universitet imeni Tarasa Sevcenka Istoria","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extinction and persistence in stochastic predator population density-dependent predator-prey model with jumps\",\"authors\":\"O. Borysenko, O. Borysenko\",\"doi\":\"10.17721/1812-5409.2023/1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The non-autonomous stochastic density dependent predator-prey model with Holling-type II functional response disturbed by white noise, centered and non-centered Poisson noises is investigated. Corresponding system of stochastic differential equations has a unique, positive, global (no explosions in a finite time) solution. Sufficient conditions are obtained for extinction, non-persistence in the mean, weak and strong persistence in the mean of a predator and prey population densities in the considered stochastic predator-prey model.\",\"PeriodicalId\":33822,\"journal\":{\"name\":\"Visnik Kiivs''kij nacional''nij universitet imeni Tarasa Sevcenka Istoria\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visnik Kiivs''kij nacional''nij universitet imeni Tarasa Sevcenka Istoria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17721/1812-5409.2023/1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnik Kiivs''kij nacional''nij universitet imeni Tarasa Sevcenka Istoria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/1812-5409.2023/1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了受白噪声、中心泊松噪声和非中心泊松噪声干扰的holling - II型功能响应的非自治随机密度依赖捕食者-猎物模型。相应的随机微分方程系统具有唯一的、正的、全局的(有限时间内无爆炸)解。在考虑的随机捕食者-猎物模型中,得到了捕食者和猎物种群密度灭绝、均值非持续性、均值弱持续性和均值强持续性的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extinction and persistence in stochastic predator population density-dependent predator-prey model with jumps
The non-autonomous stochastic density dependent predator-prey model with Holling-type II functional response disturbed by white noise, centered and non-centered Poisson noises is investigated. Corresponding system of stochastic differential equations has a unique, positive, global (no explosions in a finite time) solution. Sufficient conditions are obtained for extinction, non-persistence in the mean, weak and strong persistence in the mean of a predator and prey population densities in the considered stochastic predator-prey model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信