{"title":"非线性Schrödinger方程在T上的一阶傅里叶积分器而不丧失规律性","authors":"Yifei Wu, Fangyan Yao","doi":"10.1090/mcom/3705","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a first-order Fourier integrator for solving the cubic nonlinear Schrodinger equation in one dimension. The scheme is explicit and can be implemented using the fast Fourier transform. By a rigorous analysis, we prove that the new scheme provides the first order accuracy in $H^\\gamma$ for any initial data belonging to $H^\\gamma$, for any $\\gamma >\\frac32$. That is, up to some fixed time $T$, there exists some constant $C=C(\\|u\\|_{L^\\infty([0,T]; H^{\\gamma})})>0$, such that $$ \\|u^n-u(t_n)\\|_{H^\\gamma(\\mathbb T)}\\le C \\tau, $$ where $u^n$ denotes the numerical solution at $t_n=n\\tau$. Moreover, the mass of the numerical solution $M(u^n)$ verifies $$ \\left|M(u^n)-M(u_0)\\right|\\le C\\tau^5. $$ In particular, our scheme dose not cost any additional derivative for the first-order convergence and the numerical solution obeys the almost mass conservation law. Furthermore, if $u_0\\in H^1(\\mathbb T)$, we rigorously prove that $$ \\|u^n-u(t_n)\\|_{H^1(\\mathbb T)}\\le C\\tau^{\\frac12-}, $$ where $C= C(\\|u_0\\|_{H^1(\\mathbb T)})>0$.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"53 1","pages":"1213-1235"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A first-order Fourier integrator for the nonlinear Schrödinger equation on T without loss of regularity\",\"authors\":\"Yifei Wu, Fangyan Yao\",\"doi\":\"10.1090/mcom/3705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a first-order Fourier integrator for solving the cubic nonlinear Schrodinger equation in one dimension. The scheme is explicit and can be implemented using the fast Fourier transform. By a rigorous analysis, we prove that the new scheme provides the first order accuracy in $H^\\\\gamma$ for any initial data belonging to $H^\\\\gamma$, for any $\\\\gamma >\\\\frac32$. That is, up to some fixed time $T$, there exists some constant $C=C(\\\\|u\\\\|_{L^\\\\infty([0,T]; H^{\\\\gamma})})>0$, such that $$ \\\\|u^n-u(t_n)\\\\|_{H^\\\\gamma(\\\\mathbb T)}\\\\le C \\\\tau, $$ where $u^n$ denotes the numerical solution at $t_n=n\\\\tau$. Moreover, the mass of the numerical solution $M(u^n)$ verifies $$ \\\\left|M(u^n)-M(u_0)\\\\right|\\\\le C\\\\tau^5. $$ In particular, our scheme dose not cost any additional derivative for the first-order convergence and the numerical solution obeys the almost mass conservation law. Furthermore, if $u_0\\\\in H^1(\\\\mathbb T)$, we rigorously prove that $$ \\\\|u^n-u(t_n)\\\\|_{H^1(\\\\mathbb T)}\\\\le C\\\\tau^{\\\\frac12-}, $$ where $C= C(\\\\|u_0\\\\|_{H^1(\\\\mathbb T)})>0$.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"53 1\",\"pages\":\"1213-1235\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A first-order Fourier integrator for the nonlinear Schrödinger equation on T without loss of regularity
In this paper, we propose a first-order Fourier integrator for solving the cubic nonlinear Schrodinger equation in one dimension. The scheme is explicit and can be implemented using the fast Fourier transform. By a rigorous analysis, we prove that the new scheme provides the first order accuracy in $H^\gamma$ for any initial data belonging to $H^\gamma$, for any $\gamma >\frac32$. That is, up to some fixed time $T$, there exists some constant $C=C(\|u\|_{L^\infty([0,T]; H^{\gamma})})>0$, such that $$ \|u^n-u(t_n)\|_{H^\gamma(\mathbb T)}\le C \tau, $$ where $u^n$ denotes the numerical solution at $t_n=n\tau$. Moreover, the mass of the numerical solution $M(u^n)$ verifies $$ \left|M(u^n)-M(u_0)\right|\le C\tau^5. $$ In particular, our scheme dose not cost any additional derivative for the first-order convergence and the numerical solution obeys the almost mass conservation law. Furthermore, if $u_0\in H^1(\mathbb T)$, we rigorously prove that $$ \|u^n-u(t_n)\|_{H^1(\mathbb T)}\le C\tau^{\frac12-}, $$ where $C= C(\|u_0\|_{H^1(\mathbb T)})>0$.