{"title":"基于正交分解和重组的深度说话人表示用于说话人验证","authors":"I. Kim, Kyu-hong Kim, Ji-Whan Kim, Changkyu Choi","doi":"10.1109/ICASSP.2019.8683332","DOIUrl":null,"url":null,"abstract":"Speech signal contains intrinsic and extrinsic variations such as accent, emotion, dialect, phoneme, speaking manner, noise, music, and reverberation. Some of these variations are unnecessary and are unspecified factors of variation. These factors lead to increased variability in speaker representation. In this paper, we assume that unspecified factors of variation exist in speaker representations, and we attempt to minimize variability in speaker representation. The key idea is that a primal speaker representation can be decomposed into orthogonal vectors and these vectors are recombined by using deep neural networks (DNN) to reduce speaker representation variability, yielding performance improvement for speaker verification (SV). The experimental results show that our proposed approach produces a relative equal error rate (EER) reduction of 47.1% compared to the use of the same convolutional neural network (CNN) architecture on the Vox-Celeb dataset. Furthermore, our proposed method provides significant improvement for short utterances.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"6126-6130"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Deep Speaker Representation Using Orthogonal Decomposition and Recombination for Speaker Verification\",\"authors\":\"I. Kim, Kyu-hong Kim, Ji-Whan Kim, Changkyu Choi\",\"doi\":\"10.1109/ICASSP.2019.8683332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech signal contains intrinsic and extrinsic variations such as accent, emotion, dialect, phoneme, speaking manner, noise, music, and reverberation. Some of these variations are unnecessary and are unspecified factors of variation. These factors lead to increased variability in speaker representation. In this paper, we assume that unspecified factors of variation exist in speaker representations, and we attempt to minimize variability in speaker representation. The key idea is that a primal speaker representation can be decomposed into orthogonal vectors and these vectors are recombined by using deep neural networks (DNN) to reduce speaker representation variability, yielding performance improvement for speaker verification (SV). The experimental results show that our proposed approach produces a relative equal error rate (EER) reduction of 47.1% compared to the use of the same convolutional neural network (CNN) architecture on the Vox-Celeb dataset. Furthermore, our proposed method provides significant improvement for short utterances.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1 1\",\"pages\":\"6126-6130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8683332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Speaker Representation Using Orthogonal Decomposition and Recombination for Speaker Verification
Speech signal contains intrinsic and extrinsic variations such as accent, emotion, dialect, phoneme, speaking manner, noise, music, and reverberation. Some of these variations are unnecessary and are unspecified factors of variation. These factors lead to increased variability in speaker representation. In this paper, we assume that unspecified factors of variation exist in speaker representations, and we attempt to minimize variability in speaker representation. The key idea is that a primal speaker representation can be decomposed into orthogonal vectors and these vectors are recombined by using deep neural networks (DNN) to reduce speaker representation variability, yielding performance improvement for speaker verification (SV). The experimental results show that our proposed approach produces a relative equal error rate (EER) reduction of 47.1% compared to the use of the same convolutional neural network (CNN) architecture on the Vox-Celeb dataset. Furthermore, our proposed method provides significant improvement for short utterances.