费什巴赫共振零交叉处超冷原子的有效势

N. Zinner
{"title":"费什巴赫共振零交叉处超冷原子的有效势","authors":"N. Zinner","doi":"10.1155/2012/241051","DOIUrl":null,"url":null,"abstract":"We consider finite-range effects when the scattering length goes to zero near a magnetically controlled \nFeshbach resonance. The traditional effective-range expansion is badly behaved at this point, \nand we therefore introduce an effective potential that reproduces the full T-matrix. To lowest order \nthe effective potential goes as momentum squared times a factor that is well defined as the scattering \nlength goes to zero. The potential turns out to be proportional to the background scattering \nlength squared times the background effective range for the resonance. \nWe proceed to estimate the applicability and relative importance of this potential for Bose-Einstein condensates \nand for two-component Fermi gases \nwhere the attractive nature of the effective potential can lead to collapse above a critical particle number \nor induce instability toward pairing and superfluidity. For broad Feshbach resonances the higher order effect is \ncompletely negligible. However, for narrow resonances in tightly confined samples signatures might be \nexperimentally accessible. This could be relevant for suboptical wavelength microstructured traps \nat the interface of cold atoms and solid-state surfaces.","PeriodicalId":15106,"journal":{"name":"原子与分子物理学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effective Potential for Ultracold Atoms at the Zero Crossing of a Feshbach Resonance\",\"authors\":\"N. Zinner\",\"doi\":\"10.1155/2012/241051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider finite-range effects when the scattering length goes to zero near a magnetically controlled \\nFeshbach resonance. The traditional effective-range expansion is badly behaved at this point, \\nand we therefore introduce an effective potential that reproduces the full T-matrix. To lowest order \\nthe effective potential goes as momentum squared times a factor that is well defined as the scattering \\nlength goes to zero. The potential turns out to be proportional to the background scattering \\nlength squared times the background effective range for the resonance. \\nWe proceed to estimate the applicability and relative importance of this potential for Bose-Einstein condensates \\nand for two-component Fermi gases \\nwhere the attractive nature of the effective potential can lead to collapse above a critical particle number \\nor induce instability toward pairing and superfluidity. For broad Feshbach resonances the higher order effect is \\ncompletely negligible. However, for narrow resonances in tightly confined samples signatures might be \\nexperimentally accessible. This could be relevant for suboptical wavelength microstructured traps \\nat the interface of cold atoms and solid-state surfaces.\",\"PeriodicalId\":15106,\"journal\":{\"name\":\"原子与分子物理学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"原子与分子物理学报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/241051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"原子与分子物理学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1155/2012/241051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑了当散射长度趋近于零时的有限范围效应。传统的有效范围展开在这一点上表现很差,因此我们引入了一个再现完整t矩阵的有效势。最低阶的有效势等于动量的平方乘以一个因子,这个因子在散射长度趋于零时被很好地定义。电势与背景散射长度的平方乘以背景谐振有效范围成正比。我们继续估计该势对玻色-爱因斯坦凝聚体和双组分费米气体的适用性和相对重要性,其中有效势的吸引性质可能导致超过临界粒子数的坍缩或诱导对和超流体的不稳定性。对于宽费什巴赫共振,高阶效应完全可以忽略不计。然而,对于窄共振在严格限制的样品签名可能是实验可获得的。这可能与冷原子和固体表面界面的亚光学波长微结构陷阱有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective Potential for Ultracold Atoms at the Zero Crossing of a Feshbach Resonance
We consider finite-range effects when the scattering length goes to zero near a magnetically controlled Feshbach resonance. The traditional effective-range expansion is badly behaved at this point, and we therefore introduce an effective potential that reproduces the full T-matrix. To lowest order the effective potential goes as momentum squared times a factor that is well defined as the scattering length goes to zero. The potential turns out to be proportional to the background scattering length squared times the background effective range for the resonance. We proceed to estimate the applicability and relative importance of this potential for Bose-Einstein condensates and for two-component Fermi gases where the attractive nature of the effective potential can lead to collapse above a critical particle number or induce instability toward pairing and superfluidity. For broad Feshbach resonances the higher order effect is completely negligible. However, for narrow resonances in tightly confined samples signatures might be experimentally accessible. This could be relevant for suboptical wavelength microstructured traps at the interface of cold atoms and solid-state surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
5637
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信