{"title":"多结构几何模型拟合的快速假设滤波","authors":"Lokender Tiwari, Saket Anand","doi":"10.1109/ICIP.2016.7533056","DOIUrl":null,"url":null,"abstract":"We propose a fast and efficient two-stage hypothesis filtering technique that can improve performance of clustering based robust multi-model fitting algorithms. Sampling based hypothesis generation is nondeterministic and permits little control over generating poor model hypotheses, often leading to a significant proportion of bad hypotheses. Our novel filtering approach leverages the asymmetry in the distributions of points around the inlier/outlier boundary via the sample skewness computed in the residual space. The output is a set of promising hypotheses which aid multi-model fitting algorithms in improving accuracy as well as running time. We validate our approach on the AdelaideRMF dataset and show favorable results along with comparisons to state-of-the-art.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"127 1","pages":"3728-3732"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast hypothesis filtering for multi-structure geometric model fitting\",\"authors\":\"Lokender Tiwari, Saket Anand\",\"doi\":\"10.1109/ICIP.2016.7533056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a fast and efficient two-stage hypothesis filtering technique that can improve performance of clustering based robust multi-model fitting algorithms. Sampling based hypothesis generation is nondeterministic and permits little control over generating poor model hypotheses, often leading to a significant proportion of bad hypotheses. Our novel filtering approach leverages the asymmetry in the distributions of points around the inlier/outlier boundary via the sample skewness computed in the residual space. The output is a set of promising hypotheses which aid multi-model fitting algorithms in improving accuracy as well as running time. We validate our approach on the AdelaideRMF dataset and show favorable results along with comparisons to state-of-the-art.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"127 1\",\"pages\":\"3728-3732\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7533056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7533056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast hypothesis filtering for multi-structure geometric model fitting
We propose a fast and efficient two-stage hypothesis filtering technique that can improve performance of clustering based robust multi-model fitting algorithms. Sampling based hypothesis generation is nondeterministic and permits little control over generating poor model hypotheses, often leading to a significant proportion of bad hypotheses. Our novel filtering approach leverages the asymmetry in the distributions of points around the inlier/outlier boundary via the sample skewness computed in the residual space. The output is a set of promising hypotheses which aid multi-model fitting algorithms in improving accuracy as well as running time. We validate our approach on the AdelaideRMF dataset and show favorable results along with comparisons to state-of-the-art.