养殖海参的生态作用

1区 生物学 Q1 Agricultural and Biological Sciences
S. Purcell, C. Conand, S. Uthicke, M. Byrne
{"title":"养殖海参的生态作用","authors":"S. Purcell, C. Conand, S. Uthicke, M. Byrne","doi":"10.1201/9781315368597-12","DOIUrl":null,"url":null,"abstract":"Sea cucumbers (Echinodermata: Holothuroidea) are large and abundant members of marine benthic communities. Overexploitation worldwide has raised concern because they have important functions within ecosystems. The ecological roles of commercially exploited sea cucumbers (Aspidochirotida and Dendrochirotida) are reviewed here, focusing on recent literature. Of the more than 70 species commercially exploited, at least 12 regularly bury into sand and mud, playing major roles in bioturbation. Most aspidochirotids are deposit-feeders, reducing the organic load and redistributing surface sediments, making them bioremediators for coastal mariculture. Sea cucumbers excrete inorganic nitrogen and phosphorus, enhancing the productivity of benthic biota. This form of nutrient recycling is crucial in ecosystems in oligotrophic waters such as coral reefs. Feeding and excretion by sea cucumbers also act to increase seawater alkalinity which contributes to local buffering of ocean acidification. Sea cucumbers host more than 200 species of parasitic and commensal symbionts from seven phyla, thereby enhancing ecosystem biodiversity. They are preyed on by many taxa, thereby transferring animal tissue and nutrients (derived from detritus and microalgae) to higher trophic levels. Overexploitation of sea cucumbers is likely to decrease sediment health, reduce nutrient recycling and potential benefits of deposit-feeding to seawater chemistry, diminish biodiversity of associated symbionts, and reduce the transfer of organic matter from detritus to higher trophic levels. Ecosystem-based fisheries management needs to consider the importance of sea cucumbers in marine ecosystems and implement regulatory measures to safeguard their ecological roles.","PeriodicalId":54693,"journal":{"name":"Oceanography and Marine Biology","volume":"52 1","pages":"367-386"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"196","resultStr":"{\"title\":\"Ecological Roles of Exploited Sea Cucumbers\",\"authors\":\"S. Purcell, C. Conand, S. Uthicke, M. Byrne\",\"doi\":\"10.1201/9781315368597-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sea cucumbers (Echinodermata: Holothuroidea) are large and abundant members of marine benthic communities. Overexploitation worldwide has raised concern because they have important functions within ecosystems. The ecological roles of commercially exploited sea cucumbers (Aspidochirotida and Dendrochirotida) are reviewed here, focusing on recent literature. Of the more than 70 species commercially exploited, at least 12 regularly bury into sand and mud, playing major roles in bioturbation. Most aspidochirotids are deposit-feeders, reducing the organic load and redistributing surface sediments, making them bioremediators for coastal mariculture. Sea cucumbers excrete inorganic nitrogen and phosphorus, enhancing the productivity of benthic biota. This form of nutrient recycling is crucial in ecosystems in oligotrophic waters such as coral reefs. Feeding and excretion by sea cucumbers also act to increase seawater alkalinity which contributes to local buffering of ocean acidification. Sea cucumbers host more than 200 species of parasitic and commensal symbionts from seven phyla, thereby enhancing ecosystem biodiversity. They are preyed on by many taxa, thereby transferring animal tissue and nutrients (derived from detritus and microalgae) to higher trophic levels. Overexploitation of sea cucumbers is likely to decrease sediment health, reduce nutrient recycling and potential benefits of deposit-feeding to seawater chemistry, diminish biodiversity of associated symbionts, and reduce the transfer of organic matter from detritus to higher trophic levels. Ecosystem-based fisheries management needs to consider the importance of sea cucumbers in marine ecosystems and implement regulatory measures to safeguard their ecological roles.\",\"PeriodicalId\":54693,\"journal\":{\"name\":\"Oceanography and Marine Biology\",\"volume\":\"52 1\",\"pages\":\"367-386\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"196\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oceanography and Marine Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1201/9781315368597-12\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceanography and Marine Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1201/9781315368597-12","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 196

摘要

海参(棘皮目:海参总科)是海洋底栖生物群落中数量众多的大型成员。由于它们在生态系统中具有重要的功能,世界范围内的过度开发引起了人们的关注。本文综述了商业开发的海参(针叶参和石斛海参)的生态作用,重点介绍了最近的文献。在商业开发的70多个物种中,至少有12个经常被埋在沙子和泥浆中,在生物扰动中起着重要作用。大多数蛛形纲纲是沉积物取食动物,减少了有机负荷并重新分配了表层沉积物,使其成为沿海海水养殖的生物修复剂。海参分泌无机氮和磷,提高底栖生物的生产力。这种形式的养分循环对珊瑚礁等贫营养水域的生态系统至关重要。海参的摄食和排泄也增加了海水的碱度,有助于局部缓冲海洋酸化。海参是7门200多种寄生和共生共生体的宿主,增强了生态系统的生物多样性。它们是许多分类群的猎物,从而将动物组织和营养物质(来自碎屑和微藻)转移到更高的营养水平。海参的过度开发可能会降低沉积物的健康,减少沉积物对海水化学的营养循环和潜在益处,减少相关共生体的生物多样性,减少有机质从碎屑向更高营养水平的转移。基于生态系统的渔业管理需要考虑海参在海洋生态系统中的重要性,并实施监管措施以保障其生态作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ecological Roles of Exploited Sea Cucumbers
Sea cucumbers (Echinodermata: Holothuroidea) are large and abundant members of marine benthic communities. Overexploitation worldwide has raised concern because they have important functions within ecosystems. The ecological roles of commercially exploited sea cucumbers (Aspidochirotida and Dendrochirotida) are reviewed here, focusing on recent literature. Of the more than 70 species commercially exploited, at least 12 regularly bury into sand and mud, playing major roles in bioturbation. Most aspidochirotids are deposit-feeders, reducing the organic load and redistributing surface sediments, making them bioremediators for coastal mariculture. Sea cucumbers excrete inorganic nitrogen and phosphorus, enhancing the productivity of benthic biota. This form of nutrient recycling is crucial in ecosystems in oligotrophic waters such as coral reefs. Feeding and excretion by sea cucumbers also act to increase seawater alkalinity which contributes to local buffering of ocean acidification. Sea cucumbers host more than 200 species of parasitic and commensal symbionts from seven phyla, thereby enhancing ecosystem biodiversity. They are preyed on by many taxa, thereby transferring animal tissue and nutrients (derived from detritus and microalgae) to higher trophic levels. Overexploitation of sea cucumbers is likely to decrease sediment health, reduce nutrient recycling and potential benefits of deposit-feeding to seawater chemistry, diminish biodiversity of associated symbionts, and reduce the transfer of organic matter from detritus to higher trophic levels. Ecosystem-based fisheries management needs to consider the importance of sea cucumbers in marine ecosystems and implement regulatory measures to safeguard their ecological roles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: With increasing interest in the field and its relevance in global environmental issues, Oceanography and Marine Biology: An Annual Review provides authoritative reviews that summarize results of recent research in basic areas of marine research, exploring topics of special and topical importance while adding to new areas as they arise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信