数值求解Kuramoto-Sivashinsky方程的傅立叶谱方法

Gentian Zavalani
{"title":"数值求解Kuramoto-Sivashinsky方程的傅立叶谱方法","authors":"Gentian Zavalani","doi":"10.12691/AJNA-2-3-5","DOIUrl":null,"url":null,"abstract":"In this paper we present a numerical technique for solving Kuramoto-Sivashinsky equation, based on spectral Fourier methods. This equation describes reaction diffusion problems, and the dynamics of viscous-fuid films flowing along walls. After we wrote the equation in Fourier space, we get a system. In this case, the exponential time differencing methods integrate the system very much more accurately than other methods since the exponential time differencing methods assume in their derivation that the solution varies slowly in time. When evaluating the coefficients of the exponential time differencing and the exponential time differencing Runge Kutta methods via the”Cauchy integral”. All computational work is done with Matlab package.","PeriodicalId":12520,"journal":{"name":"Global Journal of Research In Engineering","volume":"52 5 1","pages":"90-97"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fourier Spectral Methods for Numerical Solving of the Kuramoto-Sivashinsky Equation\",\"authors\":\"Gentian Zavalani\",\"doi\":\"10.12691/AJNA-2-3-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a numerical technique for solving Kuramoto-Sivashinsky equation, based on spectral Fourier methods. This equation describes reaction diffusion problems, and the dynamics of viscous-fuid films flowing along walls. After we wrote the equation in Fourier space, we get a system. In this case, the exponential time differencing methods integrate the system very much more accurately than other methods since the exponential time differencing methods assume in their derivation that the solution varies slowly in time. When evaluating the coefficients of the exponential time differencing and the exponential time differencing Runge Kutta methods via the”Cauchy integral”. All computational work is done with Matlab package.\",\"PeriodicalId\":12520,\"journal\":{\"name\":\"Global Journal of Research In Engineering\",\"volume\":\"52 5 1\",\"pages\":\"90-97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Journal of Research In Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12691/AJNA-2-3-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Research In Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12691/AJNA-2-3-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于谱傅立叶方法求解Kuramoto-Sivashinsky方程的数值方法。这个方程描述了反应扩散问题,以及沿壁面流动的粘性流体膜的动力学。在傅里叶空间中写出方程后,我们得到一个系统。在这种情况下,指数时差方法比其他方法更精确地集成系统,因为指数时差方法在推导过程中假设解随时间变化缓慢。在利用“柯西积分”计算指数时差系数和指数时差系数时,采用龙格库塔法。所有的计算工作都是用Matlab包完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fourier Spectral Methods for Numerical Solving of the Kuramoto-Sivashinsky Equation
In this paper we present a numerical technique for solving Kuramoto-Sivashinsky equation, based on spectral Fourier methods. This equation describes reaction diffusion problems, and the dynamics of viscous-fuid films flowing along walls. After we wrote the equation in Fourier space, we get a system. In this case, the exponential time differencing methods integrate the system very much more accurately than other methods since the exponential time differencing methods assume in their derivation that the solution varies slowly in time. When evaluating the coefficients of the exponential time differencing and the exponential time differencing Runge Kutta methods via the”Cauchy integral”. All computational work is done with Matlab package.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信