Chebyshev多项式在一类拟隶属型解析函数上的应用

IF 0.3 Q4 MATHEMATICS
E. Dansu, S. O. Olatunji
{"title":"Chebyshev多项式在一类拟隶属型解析函数上的应用","authors":"E. Dansu, S. O. Olatunji","doi":"10.12697/ACUTM.2018.22.05","DOIUrl":null,"url":null,"abstract":"We introduce a class of analytic functions which is defined in terms of a quasi-subordination. Coefficient estimates including the relevant classical Fekete–Szegö inequality of functions belonging to the aforementioned class are derived. Improved results for associated classes involving subordination and majorization are also discussed.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"77 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of Chebyshev polynomials on a Sakaguchi type class of analytic functions associated with quasi-subordination\",\"authors\":\"E. Dansu, S. O. Olatunji\",\"doi\":\"10.12697/ACUTM.2018.22.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a class of analytic functions which is defined in terms of a quasi-subordination. Coefficient estimates including the relevant classical Fekete–Szegö inequality of functions belonging to the aforementioned class are derived. Improved results for associated classes involving subordination and majorization are also discussed.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/ACUTM.2018.22.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/ACUTM.2018.22.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一类用拟隶属关系定义的解析函数。系数估计包括相关的经典Fekete-Szegö不等式属于上述类的函数推导。还讨论了涉及从属和多数化的关联类的改进结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications of Chebyshev polynomials on a Sakaguchi type class of analytic functions associated with quasi-subordination
We introduce a class of analytic functions which is defined in terms of a quasi-subordination. Coefficient estimates including the relevant classical Fekete–Szegö inequality of functions belonging to the aforementioned class are derived. Improved results for associated classes involving subordination and majorization are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信