{"title":"用量子算法加速进化计算中的种群多样化","authors":"Jun Suk Kim, C. Ahn","doi":"10.1504/IJBIC.2021.113356","DOIUrl":null,"url":null,"abstract":"Quantum computing's uniqueness in commencing parallel computation renders unprecedented efficient optimisation as possible. This paper introduces the adaptation of quantum processing to crowding, one of the genetic algorithmic procedures to secure undeveloped individual chromosomes in pursuit of diversifying the target population. We argue that the nature of genetic algorithm to find the best solution in the process of optimisation can be greatly enhanced by the capability of quantum computing to perform multiple computations in parallel. By introducing the relevant quantum mathematics based on Grover's selection algorithm and constructing its mechanism in a quantum simulator, we come to conclusion that our proposed approach is valid in such a way that it can precisely reduce the amount of computation query to finish the crowding process without any impairment in the middle of genetic operations.","PeriodicalId":13636,"journal":{"name":"Int. J. Bio Inspired Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expediting population diversification in evolutionary computation with quantum algorithm\",\"authors\":\"Jun Suk Kim, C. Ahn\",\"doi\":\"10.1504/IJBIC.2021.113356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computing's uniqueness in commencing parallel computation renders unprecedented efficient optimisation as possible. This paper introduces the adaptation of quantum processing to crowding, one of the genetic algorithmic procedures to secure undeveloped individual chromosomes in pursuit of diversifying the target population. We argue that the nature of genetic algorithm to find the best solution in the process of optimisation can be greatly enhanced by the capability of quantum computing to perform multiple computations in parallel. By introducing the relevant quantum mathematics based on Grover's selection algorithm and constructing its mechanism in a quantum simulator, we come to conclusion that our proposed approach is valid in such a way that it can precisely reduce the amount of computation query to finish the crowding process without any impairment in the middle of genetic operations.\",\"PeriodicalId\":13636,\"journal\":{\"name\":\"Int. J. Bio Inspired Comput.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bio Inspired Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBIC.2021.113356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bio Inspired Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBIC.2021.113356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Expediting population diversification in evolutionary computation with quantum algorithm
Quantum computing's uniqueness in commencing parallel computation renders unprecedented efficient optimisation as possible. This paper introduces the adaptation of quantum processing to crowding, one of the genetic algorithmic procedures to secure undeveloped individual chromosomes in pursuit of diversifying the target population. We argue that the nature of genetic algorithm to find the best solution in the process of optimisation can be greatly enhanced by the capability of quantum computing to perform multiple computations in parallel. By introducing the relevant quantum mathematics based on Grover's selection algorithm and constructing its mechanism in a quantum simulator, we come to conclusion that our proposed approach is valid in such a way that it can precisely reduce the amount of computation query to finish the crowding process without any impairment in the middle of genetic operations.