托雷利轨迹与刚性

IF 0.8 3区 数学 Q2 MATHEMATICS
Sai-Kee Yeung
{"title":"托雷利轨迹与刚性","authors":"Sai-Kee Yeung","doi":"10.1307/mmj/20217207","DOIUrl":null,"url":null,"abstract":". The goal of the paper is to explain a harmonic map approach to two geometric problems related to the Torelli map. The first is related to the existence of totally geodesic submanifolds in the image of the Torelli map, and the second is on rigidity of representation of a lattice of a semi-simple Lie group in a mapping class group.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Torelli Locus and Rigidity\",\"authors\":\"Sai-Kee Yeung\",\"doi\":\"10.1307/mmj/20217207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The goal of the paper is to explain a harmonic map approach to two geometric problems related to the Torelli map. The first is related to the existence of totally geodesic submanifolds in the image of the Torelli map, and the second is on rigidity of representation of a lattice of a semi-simple Lie group in a mapping class group.\",\"PeriodicalId\":49820,\"journal\":{\"name\":\"Michigan Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Michigan Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20217207\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20217207","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

. 本文的目的是解释一个调和映射的方法,以两个几何问题有关的托雷利图。第一个问题是关于Torelli映射象中完全测地线子流形的存在性,第二个问题是关于映射类群中半简单李群的格表示的刚性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Torelli Locus and Rigidity
. The goal of the paper is to explain a harmonic map approach to two geometric problems related to the Torelli map. The first is related to the existence of totally geodesic submanifolds in the image of the Torelli map, and the second is on rigidity of representation of a lattice of a semi-simple Lie group in a mapping class group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
50
审稿时长
>12 weeks
期刊介绍: The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信