{"title":"粗糙包含函数的形式化发展","authors":"Adam Grabowski","doi":"10.2478/forma-2019-0028","DOIUrl":null,"url":null,"abstract":"Summary Rough sets, developed by Pawlak [15], are important tool to describe situation of incomplete or partially unknown information. In this article, continuing the formalization of rough sets [12], we give the formal characterization of three rough inclusion functions (RIFs). We start with the standard one, κ£, connected with Łukasiewicz [14], and extend this research for two additional RIFs: κ1, and κ2, following a paper by Gomolińska [4], [3]. We also define q-RIFs and weak q-RIFs [2]. The paper establishes a formal counterpart of [7] and makes a preliminary step towards rough mereology [16], [17] in Mizar [13].","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Formal Development of Rough Inclusion Functions\",\"authors\":\"Adam Grabowski\",\"doi\":\"10.2478/forma-2019-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Rough sets, developed by Pawlak [15], are important tool to describe situation of incomplete or partially unknown information. In this article, continuing the formalization of rough sets [12], we give the formal characterization of three rough inclusion functions (RIFs). We start with the standard one, κ£, connected with Łukasiewicz [14], and extend this research for two additional RIFs: κ1, and κ2, following a paper by Gomolińska [4], [3]. We also define q-RIFs and weak q-RIFs [2]. The paper establishes a formal counterpart of [7] and makes a preliminary step towards rough mereology [16], [17] in Mizar [13].\",\"PeriodicalId\":42667,\"journal\":{\"name\":\"Formalized Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formalized Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/forma-2019-0028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2019-0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Summary Rough sets, developed by Pawlak [15], are important tool to describe situation of incomplete or partially unknown information. In this article, continuing the formalization of rough sets [12], we give the formal characterization of three rough inclusion functions (RIFs). We start with the standard one, κ£, connected with Łukasiewicz [14], and extend this research for two additional RIFs: κ1, and κ2, following a paper by Gomolińska [4], [3]. We also define q-RIFs and weak q-RIFs [2]. The paper establishes a formal counterpart of [7] and makes a preliminary step towards rough mereology [16], [17] in Mizar [13].
期刊介绍:
Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.