二维射影线性群的群阶识别及其每阶元素的个数集合

IF 0.1 Q4 MATHEMATICS
Alireza Khalili Asboei
{"title":"二维射影线性群的群阶识别及其每阶元素的个数集合","authors":"Alireza Khalili Asboei","doi":"10.1515/gcc-2018-0011","DOIUrl":null,"url":null,"abstract":"Abstract In a finite group G, let π e ⁢ ( G ) {\\pi_{e}(G)} be the set of orders of elements of G, let s k {s_{k}} denote the number of elements of order k in G, for each k ∈ π e ⁢ ( G ) {k\\in\\pi_{e}(G)} , and then let nse ⁡ ( G ) {\\operatorname{nse}(G)} be the unordered set { s k : k ∈ π e ⁢ ( G ) } {\\{s_{k}:k\\in\\pi_{e}(G)\\}} . In this paper, it is shown that if | G | = | L 2 ⁢ ( q ) | {\\lvert G\\rvert=\\lvert L_{2}(q)\\rvert} and nse ⁡ ( G ) = nse ⁡ ( L 2 ⁢ ( q ) ) {\\operatorname{nse}(G)=\\operatorname{nse}(L_{2}(q))} for some prime-power q, then G is isomorphic to L 2 ⁢ ( q ) {L_{2}(q)} .","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"12 1","pages":"111 - 118"},"PeriodicalIF":0.1000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognition of 2-dimensional projective linear groups by the group order and the set of numbers of its elements of each order\",\"authors\":\"Alireza Khalili Asboei\",\"doi\":\"10.1515/gcc-2018-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In a finite group G, let π e ⁢ ( G ) {\\\\pi_{e}(G)} be the set of orders of elements of G, let s k {s_{k}} denote the number of elements of order k in G, for each k ∈ π e ⁢ ( G ) {k\\\\in\\\\pi_{e}(G)} , and then let nse ⁡ ( G ) {\\\\operatorname{nse}(G)} be the unordered set { s k : k ∈ π e ⁢ ( G ) } {\\\\{s_{k}:k\\\\in\\\\pi_{e}(G)\\\\}} . In this paper, it is shown that if | G | = | L 2 ⁢ ( q ) | {\\\\lvert G\\\\rvert=\\\\lvert L_{2}(q)\\\\rvert} and nse ⁡ ( G ) = nse ⁡ ( L 2 ⁢ ( q ) ) {\\\\operatorname{nse}(G)=\\\\operatorname{nse}(L_{2}(q))} for some prime-power q, then G is isomorphic to L 2 ⁢ ( q ) {L_{2}(q)} .\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"12 1\",\"pages\":\"111 - 118\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2018-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2018-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

文摘在有限群G,让πe⁢(G) {\ pi_ {e} (G)}是G的组的元素,让年代k {s_ {k}}表示元素的个数k在G,每个k∈πe⁢(G) {k \ \ pi_ {e} (G)},然后让了无⁡(G) {\ operatorname{了无}(G)}是无序集{年代k: k∈πe⁢(G)} {\ {s_ {k}: k \ \ pi_ {e} (G) \}}。本文证明了对于某些素数幂q,如果| G | = | l2¹(q) | {\lvert G\rvert=\lvert L_{2}(q)\rvert}且nse (G)= nse (l2¹¹(q)) {\operatorname{nse}(G)=\operatorname{nse}(L_{2}(q))},则G同态于l2¹(q) {L_{2}(q)}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition of 2-dimensional projective linear groups by the group order and the set of numbers of its elements of each order
Abstract In a finite group G, let π e ⁢ ( G ) {\pi_{e}(G)} be the set of orders of elements of G, let s k {s_{k}} denote the number of elements of order k in G, for each k ∈ π e ⁢ ( G ) {k\in\pi_{e}(G)} , and then let nse ⁡ ( G ) {\operatorname{nse}(G)} be the unordered set { s k : k ∈ π e ⁢ ( G ) } {\{s_{k}:k\in\pi_{e}(G)\}} . In this paper, it is shown that if | G | = | L 2 ⁢ ( q ) | {\lvert G\rvert=\lvert L_{2}(q)\rvert} and nse ⁡ ( G ) = nse ⁡ ( L 2 ⁢ ( q ) ) {\operatorname{nse}(G)=\operatorname{nse}(L_{2}(q))} for some prime-power q, then G is isomorphic to L 2 ⁢ ( q ) {L_{2}(q)} .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信