Fuyu Harada, Y. Uchiyama, Kie Shimizu, Yutaka Yamamoto
{"title":"利用乳腺超声影像放射学特征预测新辅助化疗的病理完全缓解","authors":"Fuyu Harada, Y. Uchiyama, Kie Shimizu, Yutaka Yamamoto","doi":"10.1117/12.2623991","DOIUrl":null,"url":null,"abstract":"The effectiveness of pharmacotherapy has been improved through the development of drugs that incorporate the knowledge of the molecular biology of breast cancer. Therefore, neoadjuvant chemotherapy (NAC) is actively administered to patients who wish to undergo breast-conserving surgery. During NAC, some patients have a pathological complete response (pCR). This study aims to develop a method for predicting patients with pCR during NAC. This creates new value for preoperative imaging. Breast ultrasound images were collected from 43 patients with breast cancer who received NAC at the Kumamoto University Hospital. The tumor area on the breast ultrasound image was manually marked. From the marked tumor regions, 379 radiomics features related to size, shape, density, and texture were measured. We employed the least absolute shrinkage and selection operator to select the useful radiomic features. Linear discriminant analysis (LDA) with eight selected radiomic features was used to distinguish between pCR and non-pCR. Leave-one-out was used for training and testing LDA. The sensitivity, specificity, and AUC were 89.5 % (17/19), 83.3% (19/24), and 0.920, respectively. Because the LDA is the simplest classifier, the phenotype of the lesion in the breast ultrasound image may contain information that predicts the therapeutic effect. Our proposed method could provide a new value for preoperative imaging.","PeriodicalId":92005,"journal":{"name":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","volume":"200 1","pages":"122860S - 122860S-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of pathological complete response with neoadjuvant chemotherapy by using radiomic features in breast ultrasound image\",\"authors\":\"Fuyu Harada, Y. Uchiyama, Kie Shimizu, Yutaka Yamamoto\",\"doi\":\"10.1117/12.2623991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effectiveness of pharmacotherapy has been improved through the development of drugs that incorporate the knowledge of the molecular biology of breast cancer. Therefore, neoadjuvant chemotherapy (NAC) is actively administered to patients who wish to undergo breast-conserving surgery. During NAC, some patients have a pathological complete response (pCR). This study aims to develop a method for predicting patients with pCR during NAC. This creates new value for preoperative imaging. Breast ultrasound images were collected from 43 patients with breast cancer who received NAC at the Kumamoto University Hospital. The tumor area on the breast ultrasound image was manually marked. From the marked tumor regions, 379 radiomics features related to size, shape, density, and texture were measured. We employed the least absolute shrinkage and selection operator to select the useful radiomic features. Linear discriminant analysis (LDA) with eight selected radiomic features was used to distinguish between pCR and non-pCR. Leave-one-out was used for training and testing LDA. The sensitivity, specificity, and AUC were 89.5 % (17/19), 83.3% (19/24), and 0.920, respectively. Because the LDA is the simplest classifier, the phenotype of the lesion in the breast ultrasound image may contain information that predicts the therapeutic effect. Our proposed method could provide a new value for preoperative imaging.\",\"PeriodicalId\":92005,\"journal\":{\"name\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"volume\":\"200 1\",\"pages\":\"122860S - 122860S-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2623991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2623991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of pathological complete response with neoadjuvant chemotherapy by using radiomic features in breast ultrasound image
The effectiveness of pharmacotherapy has been improved through the development of drugs that incorporate the knowledge of the molecular biology of breast cancer. Therefore, neoadjuvant chemotherapy (NAC) is actively administered to patients who wish to undergo breast-conserving surgery. During NAC, some patients have a pathological complete response (pCR). This study aims to develop a method for predicting patients with pCR during NAC. This creates new value for preoperative imaging. Breast ultrasound images were collected from 43 patients with breast cancer who received NAC at the Kumamoto University Hospital. The tumor area on the breast ultrasound image was manually marked. From the marked tumor regions, 379 radiomics features related to size, shape, density, and texture were measured. We employed the least absolute shrinkage and selection operator to select the useful radiomic features. Linear discriminant analysis (LDA) with eight selected radiomic features was used to distinguish between pCR and non-pCR. Leave-one-out was used for training and testing LDA. The sensitivity, specificity, and AUC were 89.5 % (17/19), 83.3% (19/24), and 0.920, respectively. Because the LDA is the simplest classifier, the phenotype of the lesion in the breast ultrasound image may contain information that predicts the therapeutic effect. Our proposed method could provide a new value for preoperative imaging.