鲁棒文本图像识别的序列到序列域自适应网络

Yaping Zhang, Shuai Nie, Wenju Liu, Xing Xu, Dongxiang Zhang, Heng Tao Shen
{"title":"鲁棒文本图像识别的序列到序列域自适应网络","authors":"Yaping Zhang, Shuai Nie, Wenju Liu, Xing Xu, Dongxiang Zhang, Heng Tao Shen","doi":"10.1109/CVPR.2019.00285","DOIUrl":null,"url":null,"abstract":"Domain adaptation has shown promising advances for alleviating domain shift problem. However, recent visual domain adaptation works usually focus on non-sequential object recognition with a global coarse alignment, which is inadequate to transfer effective knowledge for sequence-like text images with variable-length fine-grained character information. In this paper, we develop a Sequence-to-Sequence Domain Adaptation Network (SSDAN) for robust text image recognition, which could exploit unsupervised sequence data by an attention-based sequence encoder-decoder network. In the SSDAN, a gated attention similarity (GAS) unit is introduced to adaptively focus on aligning the distribution of the source and target sequence data in an attended character-level feature space rather than a global coarse alignment. Extensive text recognition experiments show the SSDAN could efficiently transfer sequence knowledge and validate the promising power of the proposed model towards real world applications in various recognition scenarios, including the natural scene text, handwritten text and even mathematical expression recognition.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"49 1","pages":"2735-2744"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"105","resultStr":"{\"title\":\"Sequence-To-Sequence Domain Adaptation Network for Robust Text Image Recognition\",\"authors\":\"Yaping Zhang, Shuai Nie, Wenju Liu, Xing Xu, Dongxiang Zhang, Heng Tao Shen\",\"doi\":\"10.1109/CVPR.2019.00285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Domain adaptation has shown promising advances for alleviating domain shift problem. However, recent visual domain adaptation works usually focus on non-sequential object recognition with a global coarse alignment, which is inadequate to transfer effective knowledge for sequence-like text images with variable-length fine-grained character information. In this paper, we develop a Sequence-to-Sequence Domain Adaptation Network (SSDAN) for robust text image recognition, which could exploit unsupervised sequence data by an attention-based sequence encoder-decoder network. In the SSDAN, a gated attention similarity (GAS) unit is introduced to adaptively focus on aligning the distribution of the source and target sequence data in an attended character-level feature space rather than a global coarse alignment. Extensive text recognition experiments show the SSDAN could efficiently transfer sequence knowledge and validate the promising power of the proposed model towards real world applications in various recognition scenarios, including the natural scene text, handwritten text and even mathematical expression recognition.\",\"PeriodicalId\":6711,\"journal\":{\"name\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"49 1\",\"pages\":\"2735-2744\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"105\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2019.00285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 105

摘要

领域自适应在缓解领域转移问题方面显示出良好的进展。然而,目前的视觉域自适应工作通常集中在全局粗对齐的非序列对象识别上,对于具有变长细粒度字符信息的类序列文本图像,这种方法不足以有效地传递知识。在本文中,我们开发了一个用于鲁棒文本图像识别的序列到序列域自适应网络(SSDAN),该网络可以通过基于注意力的序列编码器-解码器网络利用无监督的序列数据。在SSDAN中,引入了一个门控注意相似度(GAS)单元来自适应地关注源和目标序列数据在一个参与的字符级特征空间中的分布对齐,而不是全局的粗对齐。大量的文本识别实验表明,SSDAN可以有效地传递序列知识,并验证了该模型在各种识别场景中的应用前景,包括自然场景文本、手写文本甚至数学表达式识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequence-To-Sequence Domain Adaptation Network for Robust Text Image Recognition
Domain adaptation has shown promising advances for alleviating domain shift problem. However, recent visual domain adaptation works usually focus on non-sequential object recognition with a global coarse alignment, which is inadequate to transfer effective knowledge for sequence-like text images with variable-length fine-grained character information. In this paper, we develop a Sequence-to-Sequence Domain Adaptation Network (SSDAN) for robust text image recognition, which could exploit unsupervised sequence data by an attention-based sequence encoder-decoder network. In the SSDAN, a gated attention similarity (GAS) unit is introduced to adaptively focus on aligning the distribution of the source and target sequence data in an attended character-level feature space rather than a global coarse alignment. Extensive text recognition experiments show the SSDAN could efficiently transfer sequence knowledge and validate the promising power of the proposed model towards real world applications in various recognition scenarios, including the natural scene text, handwritten text and even mathematical expression recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信