临界框架下不可压缩粘弹性流体的最佳时间衰减率

Q4 Mathematics
Dandan Ding, Meiling Chi, Fuyi Xu
{"title":"临界框架下不可压缩粘弹性流体的最佳时间衰减率","authors":"Dandan Ding, Meiling Chi, Fuyi Xu","doi":"10.4064/am2409-5-2020","DOIUrl":null,"url":null,"abstract":". We study the Cauchy problem for multi-dimensional incompressible viscoelastic fluids in the whole space. The optimal time decay rates of strong solution constructed by Qian (2010), and Zhang (2011) in L 2 critical regularity framework are obtained for low frequencies of the data under a suitable additional condition. The proof relies on an application of Fourier analysis to a mixed parabolic-hyperbolic system, and on a refined time-weighted energy functional. As a by-product, time decay rates of L q - L r type are also captured in the critical framework.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The optimal time decay rates for incompressible viscoelastic fluids in critical framework\",\"authors\":\"Dandan Ding, Meiling Chi, Fuyi Xu\",\"doi\":\"10.4064/am2409-5-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We study the Cauchy problem for multi-dimensional incompressible viscoelastic fluids in the whole space. The optimal time decay rates of strong solution constructed by Qian (2010), and Zhang (2011) in L 2 critical regularity framework are obtained for low frequencies of the data under a suitable additional condition. The proof relies on an application of Fourier analysis to a mixed parabolic-hyperbolic system, and on a refined time-weighted energy functional. As a by-product, time decay rates of L q - L r type are also captured in the critical framework.\",\"PeriodicalId\":52313,\"journal\":{\"name\":\"Applicationes Mathematicae\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/am2409-5-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/am2409-5-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

. 研究了全空间中多维不可压缩粘弹性流体的柯西问题。在适当的附加条件下,得到了Qian(2010)和Zhang(2011)在l2临界正则性框架下构造的数据低频强解的最优时间衰减率。该证明依赖于傅里叶分析在混合抛物-双曲系统中的应用,以及一个改进的时间加权能量泛函。作为一个副产品,lq - lr型的时间衰减率也在临界框架中被捕获。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The optimal time decay rates for incompressible viscoelastic fluids in critical framework
. We study the Cauchy problem for multi-dimensional incompressible viscoelastic fluids in the whole space. The optimal time decay rates of strong solution constructed by Qian (2010), and Zhang (2011) in L 2 critical regularity framework are obtained for low frequencies of the data under a suitable additional condition. The proof relies on an application of Fourier analysis to a mixed parabolic-hyperbolic system, and on a refined time-weighted energy functional. As a by-product, time decay rates of L q - L r type are also captured in the critical framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicationes Mathematicae
Applicationes Mathematicae Mathematics-Applied Mathematics
CiteScore
0.30
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信