持久同伦与应用同伦理论

G. Carlsson
{"title":"持久同伦与应用同伦理论","authors":"G. Carlsson","doi":"10.1201/9781351251624-8","DOIUrl":null,"url":null,"abstract":"This paper is a survey of persistent homology, primarily as it is used in topological data analysis. It includes the theory of persistence modules, as well as stability theorems for persistence barcodes, generalized persistence, vectorization of persistence barcodes, as well as some applications.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Persistent homology and applied homotopy theory\",\"authors\":\"G. Carlsson\",\"doi\":\"10.1201/9781351251624-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is a survey of persistent homology, primarily as it is used in topological data analysis. It includes the theory of persistence modules, as well as stability theorems for persistence barcodes, generalized persistence, vectorization of persistence barcodes, as well as some applications.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781351251624-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781351251624-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

本文是对持续同调的综述,主要是由于它在拓扑数据分析中的应用。它包括持久性模块的理论,持久性条形码的稳定性定理,广义持久性,持久性条形码的向量化,以及一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Persistent homology and applied homotopy theory
This paper is a survey of persistent homology, primarily as it is used in topological data analysis. It includes the theory of persistence modules, as well as stability theorems for persistence barcodes, generalized persistence, vectorization of persistence barcodes, as well as some applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信