具有亮度、旋转和位置不变性的目标识别

T. Satonaka, T. Baba, T. Otsuki, T. Chikamura, T. Meng
{"title":"具有亮度、旋转和位置不变性的目标识别","authors":"T. Satonaka, T. Baba, T. Otsuki, T. Chikamura, T. Meng","doi":"10.1109/ICIP.1997.632109","DOIUrl":null,"url":null,"abstract":"We propose a neural network based on image synthesis, histogram adaptive quantization and the discrete cosine transformation (DCT) for object recognition with luminance, rotation and location invariance. An efficient representation of the invariant features is constructed using a three-dimensional memory structure. The performance of luminance and rotation invariance is illustrated by reduced error rates in face recognition. The error rate of using a two-dimensional DCT is improved from 13.6% to 2.4% with the aid of the proposed image synthesis procedure. The 2.4% error rate is better than all previously reported results using Karhunen-Loeve (1990) transform convolution networks and eigenface models. In using the DCT, our approach also enjoys the additional advantage of greatly reduced computational complexity.","PeriodicalId":92344,"journal":{"name":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","volume":"125 1","pages":"336-339 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Object recognition with luminance, rotation and location invariance\",\"authors\":\"T. Satonaka, T. Baba, T. Otsuki, T. Chikamura, T. Meng\",\"doi\":\"10.1109/ICIP.1997.632109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a neural network based on image synthesis, histogram adaptive quantization and the discrete cosine transformation (DCT) for object recognition with luminance, rotation and location invariance. An efficient representation of the invariant features is constructed using a three-dimensional memory structure. The performance of luminance and rotation invariance is illustrated by reduced error rates in face recognition. The error rate of using a two-dimensional DCT is improved from 13.6% to 2.4% with the aid of the proposed image synthesis procedure. The 2.4% error rate is better than all previously reported results using Karhunen-Loeve (1990) transform convolution networks and eigenface models. In using the DCT, our approach also enjoys the additional advantage of greatly reduced computational complexity.\",\"PeriodicalId\":92344,\"journal\":{\"name\":\"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing\",\"volume\":\"125 1\",\"pages\":\"336-339 vol.3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.1997.632109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1997.632109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

提出了一种基于图像合成、直方图自适应量化和离散余弦变换(DCT)的神经网络,用于具有亮度、旋转和位置不变性的目标识别。使用三维记忆结构构建了不变特征的有效表示。亮度不变性和旋转不变性在人脸识别中的表现可以通过降低错误率来说明。利用本文提出的图像合成方法,将二维DCT的误差率从13.6%提高到2.4%。2.4%的错误率优于之前报道的使用Karhunen-Loeve(1990)变换卷积网络和特征面模型的结果。在使用DCT时,我们的方法还享有大大降低计算复杂性的额外优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object recognition with luminance, rotation and location invariance
We propose a neural network based on image synthesis, histogram adaptive quantization and the discrete cosine transformation (DCT) for object recognition with luminance, rotation and location invariance. An efficient representation of the invariant features is constructed using a three-dimensional memory structure. The performance of luminance and rotation invariance is illustrated by reduced error rates in face recognition. The error rate of using a two-dimensional DCT is improved from 13.6% to 2.4% with the aid of the proposed image synthesis procedure. The 2.4% error rate is better than all previously reported results using Karhunen-Loeve (1990) transform convolution networks and eigenface models. In using the DCT, our approach also enjoys the additional advantage of greatly reduced computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信