统计Voronoi均值及其在近似定理中的应用

IF 0.5 Q3 MATHEMATICS
K. Demirci, S. Yildiz, F. Dirik
{"title":"统计Voronoi均值及其在近似定理中的应用","authors":"K. Demirci, S. Yildiz, F. Dirik","doi":"10.52846/ami.v48i1.1416","DOIUrl":null,"url":null,"abstract":"In this paper, we give statistical Voronoi mean which is a new statistical summability method, is not need to be regular and positive. We prove a Korovkin type approximation theorem via this method that covers many important summability methods scattered in the literature. Also, we demonstrate that our theorem is stronger than proven by earlier authors with an interesting application. Finally, we establish the rate of convergence.","PeriodicalId":43654,"journal":{"name":"Annals of the University of Craiova-Mathematics and Computer Science Series","volume":"4 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Voronoi mean and applications to approximation theorems\",\"authors\":\"K. Demirci, S. Yildiz, F. Dirik\",\"doi\":\"10.52846/ami.v48i1.1416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we give statistical Voronoi mean which is a new statistical summability method, is not need to be regular and positive. We prove a Korovkin type approximation theorem via this method that covers many important summability methods scattered in the literature. Also, we demonstrate that our theorem is stronger than proven by earlier authors with an interesting application. Finally, we establish the rate of convergence.\",\"PeriodicalId\":43654,\"journal\":{\"name\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52846/ami.v48i1.1416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the University of Craiova-Mathematics and Computer Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52846/ami.v48i1.1416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一种新的统计可和性方法——统计Voronoi均值,它不需要正则和正。我们用这种方法证明了一个Korovkin型近似定理,它涵盖了文献中许多重要的可求和性方法。此外,我们还通过一个有趣的应用证明了我们的定理比早期作者所证明的定理更强。最后,我们确定了收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Voronoi mean and applications to approximation theorems
In this paper, we give statistical Voronoi mean which is a new statistical summability method, is not need to be regular and positive. We prove a Korovkin type approximation theorem via this method that covers many important summability methods scattered in the literature. Also, we demonstrate that our theorem is stronger than proven by earlier authors with an interesting application. Finally, we establish the rate of convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
10.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信