接触位点,非简并奇点的动力米尔诺纤维

Pub Date : 2020-02-01 DOI:10.3792/pjaa.96.003
Q. Lê, T. Nguyen
{"title":"接触位点,非简并奇点的动力米尔诺纤维","authors":"Q. Lê, T. Nguyen","doi":"10.3792/pjaa.96.003","DOIUrl":null,"url":null,"abstract":": Inspired by Denef-Loeser’s identity of the Euler characteristic with compact supports of the contact loci with the Lefschetz numbers of a complex singularity, we study sheaf cohomology groups of contact loci of complex nondegenerate singularities. Moreover, also for these singularities, we obtain a motivic analogue of Leˆ Du˜ng Tra´ng’s work on a monodromy relation of a complex singularity and its restriction to a generic hyperplane.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact loci, motivic Milnor fibers of nondegenerate singularities\",\"authors\":\"Q. Lê, T. Nguyen\",\"doi\":\"10.3792/pjaa.96.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Inspired by Denef-Loeser’s identity of the Euler characteristic with compact supports of the contact loci with the Lefschetz numbers of a complex singularity, we study sheaf cohomology groups of contact loci of complex nondegenerate singularities. Moreover, also for these singularities, we obtain a motivic analogue of Leˆ Du˜ng Tra´ng’s work on a monodromy relation of a complex singularity and its restriction to a generic hyperplane.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/pjaa.96.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/pjaa.96.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受Denef-Loeser关于接触轨迹紧支撑欧拉特征与复奇点Lefschetz数的恒等的启发,我们研究了复非简并奇点接触轨迹的轴上同调群。此外,对于这些奇异点,我们也得到了Le - Du ~ ng Tra´ng关于复奇异点的单调关系及其对一般超平面的限制的一个动力模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Contact loci, motivic Milnor fibers of nondegenerate singularities
: Inspired by Denef-Loeser’s identity of the Euler characteristic with compact supports of the contact loci with the Lefschetz numbers of a complex singularity, we study sheaf cohomology groups of contact loci of complex nondegenerate singularities. Moreover, also for these singularities, we obtain a motivic analogue of Leˆ Du˜ng Tra´ng’s work on a monodromy relation of a complex singularity and its restriction to a generic hyperplane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信