基于热模型的热管中氢气解离度测定

IF 0.7 Q4 THERMODYNAMICS
A. Morozov, T. T. B’yadovskiy, K. V. Kubrak, M. Plotnikov, I. Yudin
{"title":"基于热模型的热管中氢气解离度测定","authors":"A. Morozov, T. T. B’yadovskiy, K. V. Kubrak, M. Plotnikov, I. Yudin","doi":"10.1615/interfacphenomheattransfer.2019030380","DOIUrl":null,"url":null,"abstract":"A thermal model of a cylindrical thin-walled tube heated up to a high temperature by electric current has been developed. For the current-carrying tube, the heat conduction equation is solved by taking into account the tube radiation, heat exchange with the gas surrounding and flowing inside the tube, and the gas dissociation at the tube surface. The model is verified via comparison with experimental data on the hot tube temperature and electrical resistance for argon, helium, and hydrogen up to a tube temperature of 2200◦C. To ground the heat exchange with the flowing gas used in the model, calculations of the gas flow in the tube have been performed using the direct simulation Monte Carlo method. The proposed thermal model allows determining the channels of distribution of the energy released at the tube as a result of Joule heating. The calculated heat balance makes it possible to estimate the degree of hydrogen dissociation at the outlet of the tube.","PeriodicalId":44077,"journal":{"name":"Interfacial Phenomena and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"THERMAL MODEL-BASED DETERMINATION OF DISSOCIATION DEGREE OF HYDROGEN FLOWING IN A HOT TUBE\",\"authors\":\"A. Morozov, T. T. B’yadovskiy, K. V. Kubrak, M. Plotnikov, I. Yudin\",\"doi\":\"10.1615/interfacphenomheattransfer.2019030380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A thermal model of a cylindrical thin-walled tube heated up to a high temperature by electric current has been developed. For the current-carrying tube, the heat conduction equation is solved by taking into account the tube radiation, heat exchange with the gas surrounding and flowing inside the tube, and the gas dissociation at the tube surface. The model is verified via comparison with experimental data on the hot tube temperature and electrical resistance for argon, helium, and hydrogen up to a tube temperature of 2200◦C. To ground the heat exchange with the flowing gas used in the model, calculations of the gas flow in the tube have been performed using the direct simulation Monte Carlo method. The proposed thermal model allows determining the channels of distribution of the energy released at the tube as a result of Joule heating. The calculated heat balance makes it possible to estimate the degree of hydrogen dissociation at the outlet of the tube.\",\"PeriodicalId\":44077,\"journal\":{\"name\":\"Interfacial Phenomena and Heat Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interfacial Phenomena and Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/interfacphenomheattransfer.2019030380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfacial Phenomena and Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/interfacphenomheattransfer.2019030380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 4

摘要

建立了圆柱形薄壁管被电流加热至高温的热模型。对于载流管,通过考虑管的辐射、与管周围和管内气体的热交换以及管表面气体的解离来求解热传导方程。该模型是通过与实验数据对热管温度和电阻氩,氦和氢的比较验证,高达2200◦C管的温度。为了使模型中所用流动气体的热交换接地,采用直接模拟蒙特卡罗方法对管内气体流动进行了计算。所提出的热模型允许确定由于焦耳加热而在管中释放的能量分布的通道。计算出的热平衡可以估计出管出口氢气解离的程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THERMAL MODEL-BASED DETERMINATION OF DISSOCIATION DEGREE OF HYDROGEN FLOWING IN A HOT TUBE
A thermal model of a cylindrical thin-walled tube heated up to a high temperature by electric current has been developed. For the current-carrying tube, the heat conduction equation is solved by taking into account the tube radiation, heat exchange with the gas surrounding and flowing inside the tube, and the gas dissociation at the tube surface. The model is verified via comparison with experimental data on the hot tube temperature and electrical resistance for argon, helium, and hydrogen up to a tube temperature of 2200◦C. To ground the heat exchange with the flowing gas used in the model, calculations of the gas flow in the tube have been performed using the direct simulation Monte Carlo method. The proposed thermal model allows determining the channels of distribution of the energy released at the tube as a result of Joule heating. The calculated heat balance makes it possible to estimate the degree of hydrogen dissociation at the outlet of the tube.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
40.00%
发文量
10
期刊介绍: Interfacial Phenomena and Heat Transfer aims to serve as a forum to advance understanding of fundamental and applied areas on interfacial phenomena, fluid flow, and heat transfer through interdisciplinary research. The special feature of the Journal is to highlight multi-scale phenomena involved in physical and/or chemical behaviors in the context of both classical and new unsolved problems of thermal physics, fluid mechanics, and interfacial phenomena. This goal is fulfilled by publishing novel research on experimental, theoretical and computational methods, assigning priority to comprehensive works covering at least two of the above three approaches. The scope of the Journal covers interdisciplinary areas of physics of fluids, heat and mass transfer, physical chemistry and engineering in macro-, meso-, micro-, and nano-scale. As such review papers, full-length articles and short communications are sought on the following areas: intense heat and mass transfer systems; flows in channels and complex fluid systems; physics of contact line, wetting and thermocapillary flows; instabilities and flow patterns; two-phase systems behavior including films, drops, rivulets, spray, jets, and bubbles; phase change phenomena such as boiling, evaporation, condensation and solidification; multi-scaled textured, soft or heterogeneous surfaces; and gravity dependent phenomena, e.g. processes in micro- and hyper-gravity. The Journal may also consider significant contributions related to the development of innovative experimental techniques, and instrumentation demonstrating advancement of science in the focus areas of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信