具有正密度无界熵的球对称可压缩欧拉方程的真空边界问题

C. Rickard
{"title":"具有正密度无界熵的球对称可压缩欧拉方程的真空边界问题","authors":"C. Rickard","doi":"10.1063/5.0037656","DOIUrl":null,"url":null,"abstract":"Global stability of the spherically symmetric nonisentropic compressible Euler equations with positive density around global-in-time background affine solutions is shown in the presence of free vacuum boundaries. Vacuum is achieved despite a non-vanishing density by considering a negatively unbounded entropy and we use a novel weighted energy method whereby the exponential of the entropy will act as a changing weight to handle the degeneracy of the vacuum boundary. Spherical symmetry introduces a coordinate singularity near the origin for which we adapt a method developed for the Euler-Poisson system by Guo, Hadžic and Jang to our problem.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The vacuum boundary problem for the spherically symmetric compressible Euler equations with positive density and unbounded entropy\",\"authors\":\"C. Rickard\",\"doi\":\"10.1063/5.0037656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global stability of the spherically symmetric nonisentropic compressible Euler equations with positive density around global-in-time background affine solutions is shown in the presence of free vacuum boundaries. Vacuum is achieved despite a non-vanishing density by considering a negatively unbounded entropy and we use a novel weighted energy method whereby the exponential of the entropy will act as a changing weight to handle the degeneracy of the vacuum boundary. Spherical symmetry introduces a coordinate singularity near the origin for which we adapt a method developed for the Euler-Poisson system by Guo, Hadžic and Jang to our problem.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0037656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0037656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了具有正密度的球对称非等熵可压缩欧拉方程在存在自由真空边界的情况下,围绕全局实时背景仿射解的全局稳定性。通过考虑负无界熵,在密度不消失的情况下实现真空,我们使用一种新的加权能量方法,即熵的指数将作为一个变化的权重来处理真空边界的简并。球对称在原点附近引入了一个坐标奇点,为此我们采用了Guo, Hadžic和Jang为欧拉-泊松系统开发的方法来解决我们的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The vacuum boundary problem for the spherically symmetric compressible Euler equations with positive density and unbounded entropy
Global stability of the spherically symmetric nonisentropic compressible Euler equations with positive density around global-in-time background affine solutions is shown in the presence of free vacuum boundaries. Vacuum is achieved despite a non-vanishing density by considering a negatively unbounded entropy and we use a novel weighted energy method whereby the exponential of the entropy will act as a changing weight to handle the degeneracy of the vacuum boundary. Spherical symmetry introduces a coordinate singularity near the origin for which we adapt a method developed for the Euler-Poisson system by Guo, Hadžic and Jang to our problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信