{"title":"关于超度量空间范畴上的$\\ast$-measure单子","authors":"Kh.O. Sukhorukova, M. Zarichnyǐ","doi":"10.15330/cmp.14.2.429-436","DOIUrl":null,"url":null,"abstract":"The functor of $\\ast$-measures of compact support on the category of ultrametric spaces and non-expanding maps is introduced in the previous publication of the authors. In the present note, we prove that this functor determines a monad on this category. The monad structure allows us to define the tensor product of $\\ast$-measures. We consider some applications of this notion to equilibrium theory.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On $\\\\ast$-measure monads on the category of ultrametric spaces\",\"authors\":\"Kh.O. Sukhorukova, M. Zarichnyǐ\",\"doi\":\"10.15330/cmp.14.2.429-436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The functor of $\\\\ast$-measures of compact support on the category of ultrametric spaces and non-expanding maps is introduced in the previous publication of the authors. In the present note, we prove that this functor determines a monad on this category. The monad structure allows us to define the tensor product of $\\\\ast$-measures. We consider some applications of this notion to equilibrium theory.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.14.2.429-436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.2.429-436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On $\ast$-measure monads on the category of ultrametric spaces
The functor of $\ast$-measures of compact support on the category of ultrametric spaces and non-expanding maps is introduced in the previous publication of the authors. In the present note, we prove that this functor determines a monad on this category. The monad structure allows us to define the tensor product of $\ast$-measures. We consider some applications of this notion to equilibrium theory.