关于超度量空间范畴上的$\ast$-measure单子

IF 1 Q1 MATHEMATICS
Kh.O. Sukhorukova, M. Zarichnyǐ
{"title":"关于超度量空间范畴上的$\\ast$-measure单子","authors":"Kh.O. Sukhorukova, M. Zarichnyǐ","doi":"10.15330/cmp.14.2.429-436","DOIUrl":null,"url":null,"abstract":"The functor of $\\ast$-measures of compact support on the category of ultrametric spaces and non-expanding maps is introduced in the previous publication of the authors. In the present note, we prove that this functor determines a monad on this category. The monad structure allows us to define the tensor product of $\\ast$-measures. We consider some applications of this notion to equilibrium theory.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On $\\\\ast$-measure monads on the category of ultrametric spaces\",\"authors\":\"Kh.O. Sukhorukova, M. Zarichnyǐ\",\"doi\":\"10.15330/cmp.14.2.429-436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The functor of $\\\\ast$-measures of compact support on the category of ultrametric spaces and non-expanding maps is introduced in the previous publication of the authors. In the present note, we prove that this functor determines a monad on this category. The monad structure allows us to define the tensor product of $\\\\ast$-measures. We consider some applications of this notion to equilibrium theory.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.14.2.429-436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.2.429-436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

超度量空间和非展开映射范畴上的紧支撑测度的函子在作者先前的文章中已经被引入。在本论文中,我们证明了这个函子决定了这个范畴上的单子。单元结构允许我们定义$\ast$-测度的张量积。我们考虑了这一概念在均衡理论中的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On $\ast$-measure monads on the category of ultrametric spaces
The functor of $\ast$-measures of compact support on the category of ultrametric spaces and non-expanding maps is introduced in the previous publication of the authors. In the present note, we prove that this functor determines a monad on this category. The monad structure allows us to define the tensor product of $\ast$-measures. We consider some applications of this notion to equilibrium theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信