热危矿井气流热湿参数的稳态计算模型

IF 0.7 Q4 THERMODYNAMICS
Tao Gao, Fengtian Yue, Meng Sun, Jing Wei, Yi-jiang Wang
{"title":"热危矿井气流热湿参数的稳态计算模型","authors":"Tao Gao, Fengtian Yue, Meng Sun, Jing Wei, Yi-jiang Wang","doi":"10.1615/interfacphenomheattransfer.2020033145","DOIUrl":null,"url":null,"abstract":"In order to solve the problem of heat hazard in the main roadway of a shaft bottom, this paper establishes a steady calculation model to predict air conditioning airflow in the shaft. Based on the steady heat transfer theory, the model was used to calculate the convective heat and mass transfer between the airflow and shaft wall, as well as the heat conduction between the shaft wall and heat adjusting circle of wall rock. According to the analogous principles of heat and mass transfer, the water vapor transfer between the airflow and shaft wall was calculated. Furthermore, the energy balance equation was set up to consider the heat and humidity exchanges between the airflow, shaft wall, heat adjusting circle of wall rock, and gravity compression heat of the airflow. Meanwhile, the difference model was derived to calculate the heat and humidity parameters of the vertical shaft airflow. The developed model was applied to the auxiliary shaft at the Wutongzhuang Coal Mine. The calculated values of the heat and humidity parameters of airflow in the model were compared with the measured values in the shaft bottom. The results showed that the calculation errors of dry bulb temperature and relative humidity were less than 5.4% and 6.1%, respectively. Hence, this model is proper and acceptable, which could be used to predict the heat and humidity parameters of air conditioning airflow in a coal mine. The study is significant to the pithead cooling system design.","PeriodicalId":44077,"journal":{"name":"Interfacial Phenomena and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A STEADY CALCULATION MODEL ON HEAT AND HUMIDITY PARAMETERS OF AIRFLOW IN HEAT HAZARD MINES\",\"authors\":\"Tao Gao, Fengtian Yue, Meng Sun, Jing Wei, Yi-jiang Wang\",\"doi\":\"10.1615/interfacphenomheattransfer.2020033145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the problem of heat hazard in the main roadway of a shaft bottom, this paper establishes a steady calculation model to predict air conditioning airflow in the shaft. Based on the steady heat transfer theory, the model was used to calculate the convective heat and mass transfer between the airflow and shaft wall, as well as the heat conduction between the shaft wall and heat adjusting circle of wall rock. According to the analogous principles of heat and mass transfer, the water vapor transfer between the airflow and shaft wall was calculated. Furthermore, the energy balance equation was set up to consider the heat and humidity exchanges between the airflow, shaft wall, heat adjusting circle of wall rock, and gravity compression heat of the airflow. Meanwhile, the difference model was derived to calculate the heat and humidity parameters of the vertical shaft airflow. The developed model was applied to the auxiliary shaft at the Wutongzhuang Coal Mine. The calculated values of the heat and humidity parameters of airflow in the model were compared with the measured values in the shaft bottom. The results showed that the calculation errors of dry bulb temperature and relative humidity were less than 5.4% and 6.1%, respectively. Hence, this model is proper and acceptable, which could be used to predict the heat and humidity parameters of air conditioning airflow in a coal mine. The study is significant to the pithead cooling system design.\",\"PeriodicalId\":44077,\"journal\":{\"name\":\"Interfacial Phenomena and Heat Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interfacial Phenomena and Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/interfacphenomheattransfer.2020033145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfacial Phenomena and Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/interfacphenomheattransfer.2020033145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 1

摘要

为了解决某竖井井底主巷的热危害问题,建立了竖井空调气流稳定预测计算模型。该模型基于稳态传热理论,计算了气流与井壁之间的对流传热传质以及井壁与围岩热调节圈之间的热传导。根据传热传质的类似原理,计算了气流与井壁之间的水蒸气传质。建立了考虑气流与井壁、围岩热调节圈、气流重力压缩热之间的热湿交换的能量平衡方程。同时,导出了计算竖井气流热湿参数的差分模型。将所建立的模型应用于梧桐庄煤矿副井。将模型中气流热湿参数的计算值与井筒底部的实测值进行了比较。结果表明,该方法对干球温度和相对湿度的计算误差分别小于5.4%和6.1%。因此,该模型是合理的、可接受的,可用于煤矿空调气流的热湿参数预测。研究结果对矿井口冷却系统的设计具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A STEADY CALCULATION MODEL ON HEAT AND HUMIDITY PARAMETERS OF AIRFLOW IN HEAT HAZARD MINES
In order to solve the problem of heat hazard in the main roadway of a shaft bottom, this paper establishes a steady calculation model to predict air conditioning airflow in the shaft. Based on the steady heat transfer theory, the model was used to calculate the convective heat and mass transfer between the airflow and shaft wall, as well as the heat conduction between the shaft wall and heat adjusting circle of wall rock. According to the analogous principles of heat and mass transfer, the water vapor transfer between the airflow and shaft wall was calculated. Furthermore, the energy balance equation was set up to consider the heat and humidity exchanges between the airflow, shaft wall, heat adjusting circle of wall rock, and gravity compression heat of the airflow. Meanwhile, the difference model was derived to calculate the heat and humidity parameters of the vertical shaft airflow. The developed model was applied to the auxiliary shaft at the Wutongzhuang Coal Mine. The calculated values of the heat and humidity parameters of airflow in the model were compared with the measured values in the shaft bottom. The results showed that the calculation errors of dry bulb temperature and relative humidity were less than 5.4% and 6.1%, respectively. Hence, this model is proper and acceptable, which could be used to predict the heat and humidity parameters of air conditioning airflow in a coal mine. The study is significant to the pithead cooling system design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
40.00%
发文量
10
期刊介绍: Interfacial Phenomena and Heat Transfer aims to serve as a forum to advance understanding of fundamental and applied areas on interfacial phenomena, fluid flow, and heat transfer through interdisciplinary research. The special feature of the Journal is to highlight multi-scale phenomena involved in physical and/or chemical behaviors in the context of both classical and new unsolved problems of thermal physics, fluid mechanics, and interfacial phenomena. This goal is fulfilled by publishing novel research on experimental, theoretical and computational methods, assigning priority to comprehensive works covering at least two of the above three approaches. The scope of the Journal covers interdisciplinary areas of physics of fluids, heat and mass transfer, physical chemistry and engineering in macro-, meso-, micro-, and nano-scale. As such review papers, full-length articles and short communications are sought on the following areas: intense heat and mass transfer systems; flows in channels and complex fluid systems; physics of contact line, wetting and thermocapillary flows; instabilities and flow patterns; two-phase systems behavior including films, drops, rivulets, spray, jets, and bubbles; phase change phenomena such as boiling, evaporation, condensation and solidification; multi-scaled textured, soft or heterogeneous surfaces; and gravity dependent phenomena, e.g. processes in micro- and hyper-gravity. The Journal may also consider significant contributions related to the development of innovative experimental techniques, and instrumentation demonstrating advancement of science in the focus areas of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信