{"title":"保持隐私的联邦奇异值分解","authors":"Bowen Liu, Qiang Tang","doi":"10.3390/app13137373","DOIUrl":null,"url":null,"abstract":"Singular value decomposition (SVD) is a fundamental technique widely used in various applications, such as recommendation systems and principal component analyses. In recent years, the need for privacy-preserving computations has been increasing constantly, which concerns SVD as well. Federated SVD has emerged as a promising approach that enables collaborative SVD computation without sharing raw data. However, existing federated approaches still need improvements regarding privacy guarantees and utility preservation. This paper moves a step further towards these directions: we propose two enhanced federated SVD schemes focusing on utility and privacy, respectively. Using a recommendation system use-case with real-world data, we demonstrate that our schemes outperform the state-of-the-art federated SVD solution. Our utility-enhanced scheme (utilizing secure aggregation) improves the final utility and the convergence speed by more than 2.5 times compared with the existing state-of-the-art approach. In contrast, our privacy-enhancing scheme (utilizing differential privacy) provides more robust privacy protection while improving the same aspect by more than 25%.","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"23 1","pages":"1271"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Privacy-preserving Federated Singular Value Decomposition\",\"authors\":\"Bowen Liu, Qiang Tang\",\"doi\":\"10.3390/app13137373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Singular value decomposition (SVD) is a fundamental technique widely used in various applications, such as recommendation systems and principal component analyses. In recent years, the need for privacy-preserving computations has been increasing constantly, which concerns SVD as well. Federated SVD has emerged as a promising approach that enables collaborative SVD computation without sharing raw data. However, existing federated approaches still need improvements regarding privacy guarantees and utility preservation. This paper moves a step further towards these directions: we propose two enhanced federated SVD schemes focusing on utility and privacy, respectively. Using a recommendation system use-case with real-world data, we demonstrate that our schemes outperform the state-of-the-art federated SVD solution. Our utility-enhanced scheme (utilizing secure aggregation) improves the final utility and the convergence speed by more than 2.5 times compared with the existing state-of-the-art approach. In contrast, our privacy-enhancing scheme (utilizing differential privacy) provides more robust privacy protection while improving the same aspect by more than 25%.\",\"PeriodicalId\":13158,\"journal\":{\"name\":\"IACR Cryptol. ePrint Arch.\",\"volume\":\"23 1\",\"pages\":\"1271\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Cryptol. ePrint Arch.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/app13137373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app13137373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Privacy-preserving Federated Singular Value Decomposition
Singular value decomposition (SVD) is a fundamental technique widely used in various applications, such as recommendation systems and principal component analyses. In recent years, the need for privacy-preserving computations has been increasing constantly, which concerns SVD as well. Federated SVD has emerged as a promising approach that enables collaborative SVD computation without sharing raw data. However, existing federated approaches still need improvements regarding privacy guarantees and utility preservation. This paper moves a step further towards these directions: we propose two enhanced federated SVD schemes focusing on utility and privacy, respectively. Using a recommendation system use-case with real-world data, we demonstrate that our schemes outperform the state-of-the-art federated SVD solution. Our utility-enhanced scheme (utilizing secure aggregation) improves the final utility and the convergence speed by more than 2.5 times compared with the existing state-of-the-art approach. In contrast, our privacy-enhancing scheme (utilizing differential privacy) provides more robust privacy protection while improving the same aspect by more than 25%.