准二维材料的功能化:化学和应变诱导修饰

IF 1.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. Solomenko, R. Balabai, T. Radchenko, V. Tatarenko
{"title":"准二维材料的功能化:化学和应变诱导修饰","authors":"A. Solomenko, R. Balabai, T. Radchenko, V. Tatarenko","doi":"10.15407/ufm.23.02.147","DOIUrl":null,"url":null,"abstract":"Among the family of currently known promising quasi-two-dimensional (2D) materials, the authors of this survey concentrate on the problem of functionalization of the graphene- and phosphorene-based structures. In most cases, the modification of their properties occurs through the covalent or noncovalent surface functionalization and mechanical affects. The atomic structures and some physicochemical features of 2D materials possessing novel properties as compared to their bulk counterparts are analysed. Their main advantages are the thickness of one or more atoms, the absence of surface-broken bonds, high mobility of charge carriers, the flexibility, the ability to be combined artificially into coplanar (lateral) or lamellar heterostructures, as well as the possibility to manipulate widely the band-gap changing from the semi-conducting state even into the semi-metallic one (or vice versa) when needed. In order to reveal new factors affecting the electronic properties of 2D materials by means of the computational experiment using the author’s (self-constructed) software code, a series of studies are carried out. They are the calculations of the spatial distribution of valence electrons’ density, the electron densities of states, the band-gap widths, Coulomb potentials along selected directions, the charge values in regions of different-size material, the dielectric matrices, the macroscopic relative permittivities, and absorption spectra. A series of recent studies, which the authors carried out modelling the electronic and transport properties of single- or multilayer graphene films subjected to deformation or/and magnetic fields and containing different-type (point- or/and linear-acting) defects is reviewed. Analysing the obtained results and revealed effects, it is claimed that the uniaxial tensile deformations or shear deformations along with their combinations as well as the structural imperfections (mainly, the mutually configured defects) can be useful for achieving the new level of functionalization of graphene. So, for modification of its electrotransport properties through tuning the band-gap value as much as it is enough to achieve the graphene transformation from the zero-band-gap semi-metallic state into the semi-conducting state and even reach the gap values, which are substantially higher than that for some materials (including silicon) currently used widely in the nanoelectronic devices. The strain- and defect-induced electron–hole asymmetry and anisotropy of conductivity and its nonmonotony as a function of deformation suggest a confidence in manipulating the electrotransport properties of graphene-like and beyond quasi-2D materials through a variety of both strains and defects. The use of reviewed and analysed results serves as a significant step in improving the properties of the considered materials in order to implement the multifunctional applications of them in the immediate prospect.","PeriodicalId":41786,"journal":{"name":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","volume":"5 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Functionalization of Quasi-Two-Dimensional Materials: Chemical and Strain-Induced Modifications\",\"authors\":\"A. Solomenko, R. Balabai, T. Radchenko, V. Tatarenko\",\"doi\":\"10.15407/ufm.23.02.147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the family of currently known promising quasi-two-dimensional (2D) materials, the authors of this survey concentrate on the problem of functionalization of the graphene- and phosphorene-based structures. In most cases, the modification of their properties occurs through the covalent or noncovalent surface functionalization and mechanical affects. The atomic structures and some physicochemical features of 2D materials possessing novel properties as compared to their bulk counterparts are analysed. Their main advantages are the thickness of one or more atoms, the absence of surface-broken bonds, high mobility of charge carriers, the flexibility, the ability to be combined artificially into coplanar (lateral) or lamellar heterostructures, as well as the possibility to manipulate widely the band-gap changing from the semi-conducting state even into the semi-metallic one (or vice versa) when needed. In order to reveal new factors affecting the electronic properties of 2D materials by means of the computational experiment using the author’s (self-constructed) software code, a series of studies are carried out. They are the calculations of the spatial distribution of valence electrons’ density, the electron densities of states, the band-gap widths, Coulomb potentials along selected directions, the charge values in regions of different-size material, the dielectric matrices, the macroscopic relative permittivities, and absorption spectra. A series of recent studies, which the authors carried out modelling the electronic and transport properties of single- or multilayer graphene films subjected to deformation or/and magnetic fields and containing different-type (point- or/and linear-acting) defects is reviewed. Analysing the obtained results and revealed effects, it is claimed that the uniaxial tensile deformations or shear deformations along with their combinations as well as the structural imperfections (mainly, the mutually configured defects) can be useful for achieving the new level of functionalization of graphene. So, for modification of its electrotransport properties through tuning the band-gap value as much as it is enough to achieve the graphene transformation from the zero-band-gap semi-metallic state into the semi-conducting state and even reach the gap values, which are substantially higher than that for some materials (including silicon) currently used widely in the nanoelectronic devices. The strain- and defect-induced electron–hole asymmetry and anisotropy of conductivity and its nonmonotony as a function of deformation suggest a confidence in manipulating the electrotransport properties of graphene-like and beyond quasi-2D materials through a variety of both strains and defects. The use of reviewed and analysed results serves as a significant step in improving the properties of the considered materials in order to implement the multifunctional applications of them in the immediate prospect.\",\"PeriodicalId\":41786,\"journal\":{\"name\":\"Uspekhi Fiziki Metallov-Progress in Physics of Metals\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uspekhi Fiziki Metallov-Progress in Physics of Metals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/ufm.23.02.147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/ufm.23.02.147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 15

摘要

在目前已知的有前途的准二维(2D)材料家族中,本调查的作者集中在石墨烯和磷烯基结构的功能化问题上。在大多数情况下,其性质的改变是通过共价或非共价表面功能化和机械作用发生的。分析了具有新性质的二维材料的原子结构和一些物理化学特征。它们的主要优点是一个或多个原子的厚度,没有表面断裂的键,电荷载流子的高迁移率,灵活性,人工组合成共面(横向)或层状异质结构的能力,以及在需要时广泛操纵从半导体状态转变为半金属状态的带隙的可能性(反之亦然)。为了揭示影响二维材料电子特性的新因素,利用作者(自建)的软件代码进行了计算实验,进行了一系列的研究。它们是价电子密度的空间分布、态电子密度、带隙宽度、沿选定方向的库仑势、不同尺寸材料区域的电荷值、介电矩阵、宏观相对介电常数和吸收光谱的计算。本文回顾了作者最近进行的一系列研究,这些研究模拟了单层或多层石墨烯薄膜在变形或/和磁场作用下的电子和输运特性,并包含了不同类型的(点或/和线性作用)缺陷。分析得到的结果和揭示的效应,声称单轴拉伸变形或剪切变形及其组合以及结构缺陷(主要是相互配置的缺陷)可以帮助实现石墨烯的新功能化水平。因此,通过调整带隙值来改变石墨烯的电输运性质,使其从零带隙半金属态转变为半导体态,甚至达到带隙值,这大大高于目前纳米电子器件中广泛使用的一些材料(包括硅)。应变和缺陷诱导的电子空穴不对称性和电导率各向异性及其作为变形函数的非单调性表明,通过各种应变和缺陷来操纵类石墨烯和准二维材料的电输运特性是有信心的。使用审查和分析的结果是改善所考虑材料性能的一个重要步骤,以便在不久的将来实现它们的多功能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functionalization of Quasi-Two-Dimensional Materials: Chemical and Strain-Induced Modifications
Among the family of currently known promising quasi-two-dimensional (2D) materials, the authors of this survey concentrate on the problem of functionalization of the graphene- and phosphorene-based structures. In most cases, the modification of their properties occurs through the covalent or noncovalent surface functionalization and mechanical affects. The atomic structures and some physicochemical features of 2D materials possessing novel properties as compared to their bulk counterparts are analysed. Their main advantages are the thickness of one or more atoms, the absence of surface-broken bonds, high mobility of charge carriers, the flexibility, the ability to be combined artificially into coplanar (lateral) or lamellar heterostructures, as well as the possibility to manipulate widely the band-gap changing from the semi-conducting state even into the semi-metallic one (or vice versa) when needed. In order to reveal new factors affecting the electronic properties of 2D materials by means of the computational experiment using the author’s (self-constructed) software code, a series of studies are carried out. They are the calculations of the spatial distribution of valence electrons’ density, the electron densities of states, the band-gap widths, Coulomb potentials along selected directions, the charge values in regions of different-size material, the dielectric matrices, the macroscopic relative permittivities, and absorption spectra. A series of recent studies, which the authors carried out modelling the electronic and transport properties of single- or multilayer graphene films subjected to deformation or/and magnetic fields and containing different-type (point- or/and linear-acting) defects is reviewed. Analysing the obtained results and revealed effects, it is claimed that the uniaxial tensile deformations or shear deformations along with their combinations as well as the structural imperfections (mainly, the mutually configured defects) can be useful for achieving the new level of functionalization of graphene. So, for modification of its electrotransport properties through tuning the band-gap value as much as it is enough to achieve the graphene transformation from the zero-band-gap semi-metallic state into the semi-conducting state and even reach the gap values, which are substantially higher than that for some materials (including silicon) currently used widely in the nanoelectronic devices. The strain- and defect-induced electron–hole asymmetry and anisotropy of conductivity and its nonmonotony as a function of deformation suggest a confidence in manipulating the electrotransport properties of graphene-like and beyond quasi-2D materials through a variety of both strains and defects. The use of reviewed and analysed results serves as a significant step in improving the properties of the considered materials in order to implement the multifunctional applications of them in the immediate prospect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
18.80%
发文量
21
审稿时长
13 weeks
期刊介绍: The review journal Uspehi Fiziki Metallov (abbreviated key-title: Usp. Fiz. Met.) was founded in 2000. In 2018, the journal officially obtained parallel title Progress in Physics of Metals (abbreviated title — Prog. Phys. Met.). The journal publishes articles (that has not been published nowhere earlier and are not being considered for publication elsewhere) comprising reviews of experimental and theoretical results in physics and technology of metals, alloys, compounds, and materials that possess metallic properties; reviews on monographs, information about conferences, seminars; data on the history of metal physics; advertising of new technologies, materials and devices. Scope of the Journal: Electronic Structure, Electrical, Magnetic and Optical Properties; Interactions of Radiation and Particles with Solids and Liquids; Structure and Properties of Amorphous Solids and Liquids; Defects and Dynamics of Crystal Structure; Mechanical, Thermal and Kinetic Properties; Phase Equilibria and Transformations; Interphase Boundaries, Metal Surfaces and Films; Structure and Properties of Nanoscale and Mesoscopic Materials; Treatment of Metallic Materials and Its Effects on Microstructure and Properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信