{"title":"斯蒂尔茨微分与积分方程背景下的logistic方程","authors":"\t\tEquations\t\t\tIgnacio Márquez Albés, A. Slavík","doi":"10.14232/ejqtde.2023.1.10","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce logistic equations with Stieltjes derivatives and provide explicit solution formulas. As an application, we present a population model which involves intraspecific competition, periods of hibernation, as well as seasonal reproductive cycles. We also deal with various forms of Stieltjes integral equations, and find the corresponding logistic equations. We show that our work extends earlier results for dynamic equations on time scales, which served as an inspiration for this paper.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"150 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The logistic equation in the context of Stieltjes differential and\\n integral equations\",\"authors\":\"\\t\\tEquations\\t\\t\\tIgnacio Márquez Albés, A. Slavík\",\"doi\":\"10.14232/ejqtde.2023.1.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce logistic equations with Stieltjes derivatives and provide explicit solution formulas. As an application, we present a population model which involves intraspecific competition, periods of hibernation, as well as seasonal reproductive cycles. We also deal with various forms of Stieltjes integral equations, and find the corresponding logistic equations. We show that our work extends earlier results for dynamic equations on time scales, which served as an inspiration for this paper.\",\"PeriodicalId\":50537,\"journal\":{\"name\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14232/ejqtde.2023.1.10\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2023.1.10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The logistic equation in the context of Stieltjes differential and
integral equations
In this paper, we introduce logistic equations with Stieltjes derivatives and provide explicit solution formulas. As an application, we present a population model which involves intraspecific competition, periods of hibernation, as well as seasonal reproductive cycles. We also deal with various forms of Stieltjes integral equations, and find the corresponding logistic equations. We show that our work extends earlier results for dynamic equations on time scales, which served as an inspiration for this paper.
期刊介绍:
The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875.
All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.