基于层次序列摘要的动作识别

Yale Song, Louis-Philippe Morency, Randall Davis
{"title":"基于层次序列摘要的动作识别","authors":"Yale Song, Louis-Philippe Morency, Randall Davis","doi":"10.1109/CVPR.2013.457","DOIUrl":null,"url":null,"abstract":"Recent progress has shown that learning from hierarchical feature representations leads to improvements in various computer vision tasks. Motivated by the observation that human activity data contains information at various temporal resolutions, we present a hierarchical sequence summarization approach for action recognition that learns multiple layers of discriminative feature representations at different temporal granularities. We build up a hierarchy dynamically and recursively by alternating sequence learning and sequence summarization. For sequence learning we use CRFs with latent variables to learn hidden spatio-temporal dynamics, for sequence summarization we group observations that have similar semantic meaning in the latent space. For each layer we learn an abstract feature representation through non-linear gate functions. This procedure is repeated to obtain a hierarchical sequence summary representation. We develop an efficient learning method to train our model and show that its complexity grows sub linearly with the size of the hierarchy. Experimental results show the effectiveness of our approach, achieving the best published results on the Arm Gesture and Canal9 datasets.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"33 1","pages":"3562-3569"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":"{\"title\":\"Action Recognition by Hierarchical Sequence Summarization\",\"authors\":\"Yale Song, Louis-Philippe Morency, Randall Davis\",\"doi\":\"10.1109/CVPR.2013.457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent progress has shown that learning from hierarchical feature representations leads to improvements in various computer vision tasks. Motivated by the observation that human activity data contains information at various temporal resolutions, we present a hierarchical sequence summarization approach for action recognition that learns multiple layers of discriminative feature representations at different temporal granularities. We build up a hierarchy dynamically and recursively by alternating sequence learning and sequence summarization. For sequence learning we use CRFs with latent variables to learn hidden spatio-temporal dynamics, for sequence summarization we group observations that have similar semantic meaning in the latent space. For each layer we learn an abstract feature representation through non-linear gate functions. This procedure is repeated to obtain a hierarchical sequence summary representation. We develop an efficient learning method to train our model and show that its complexity grows sub linearly with the size of the hierarchy. Experimental results show the effectiveness of our approach, achieving the best published results on the Arm Gesture and Canal9 datasets.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"33 1\",\"pages\":\"3562-3569\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"101\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101

摘要

最近的进展表明,从分层特征表示中学习可以改善各种计算机视觉任务。观察到人类活动数据包含不同时间分辨率的信息,我们提出了一种用于动作识别的分层序列摘要方法,该方法可以学习不同时间粒度的多层判别特征表示。通过交替的序列学习和序列总结,动态递归地建立了一个层次结构。对于序列学习,我们使用带有潜在变量的crf来学习隐藏的时空动态,对于序列总结,我们将潜在空间中具有相似语义的观测值分组。对于每一层,我们通过非线性门函数学习一个抽象的特征表示。重复此过程以获得分层序列摘要表示。我们开发了一种有效的学习方法来训练我们的模型,并表明其复杂性随着层次结构的大小呈亚线性增长。实验结果表明了该方法的有效性,在Arm Gesture和Canal9数据集上取得了已发表的最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Action Recognition by Hierarchical Sequence Summarization
Recent progress has shown that learning from hierarchical feature representations leads to improvements in various computer vision tasks. Motivated by the observation that human activity data contains information at various temporal resolutions, we present a hierarchical sequence summarization approach for action recognition that learns multiple layers of discriminative feature representations at different temporal granularities. We build up a hierarchy dynamically and recursively by alternating sequence learning and sequence summarization. For sequence learning we use CRFs with latent variables to learn hidden spatio-temporal dynamics, for sequence summarization we group observations that have similar semantic meaning in the latent space. For each layer we learn an abstract feature representation through non-linear gate functions. This procedure is repeated to obtain a hierarchical sequence summary representation. We develop an efficient learning method to train our model and show that its complexity grows sub linearly with the size of the hierarchy. Experimental results show the effectiveness of our approach, achieving the best published results on the Arm Gesture and Canal9 datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信