交互模型中的控制变量

IF 2.3 Q2 BUSINESS, FINANCE
E. dehaan, James R. Moon, Jonathan E. Shipman, Quinn T. Swanquist, Robert L. Whited
{"title":"交互模型中的控制变量","authors":"E. dehaan, James R. Moon, Jonathan E. Shipman, Quinn T. Swanquist, Robert L. Whited","doi":"10.2308/jfr-2021-023","DOIUrl":null,"url":null,"abstract":"\n Accounting studies often examine whether the relation between X and Y varies with a moderating variable, M, by including an interactive term, X × M, in a regression. We provide plain-English guidance on why, how, and when to use control variables, Z, in interaction tests. A simulation and simple descriptions demonstrate how interacted controls affect coefficient estimates and interpretations. In particular, we demonstrate how controlling for Z without an accompanying interaction of X × Z and/or M × Z generally does not eliminate the confounding effect of Z on X × M. We conclude with guidance for future research.\n Data Availability: Stata code to produce the simulations in this paper is available, as linked in the text.\n JEL Classifications: M40; M41; C01; C18.","PeriodicalId":42044,"journal":{"name":"Journal of Financial Reporting","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Control Variables in Interactive Models\",\"authors\":\"E. dehaan, James R. Moon, Jonathan E. Shipman, Quinn T. Swanquist, Robert L. Whited\",\"doi\":\"10.2308/jfr-2021-023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Accounting studies often examine whether the relation between X and Y varies with a moderating variable, M, by including an interactive term, X × M, in a regression. We provide plain-English guidance on why, how, and when to use control variables, Z, in interaction tests. A simulation and simple descriptions demonstrate how interacted controls affect coefficient estimates and interpretations. In particular, we demonstrate how controlling for Z without an accompanying interaction of X × Z and/or M × Z generally does not eliminate the confounding effect of Z on X × M. We conclude with guidance for future research.\\n Data Availability: Stata code to produce the simulations in this paper is available, as linked in the text.\\n JEL Classifications: M40; M41; C01; C18.\",\"PeriodicalId\":42044,\"journal\":{\"name\":\"Journal of Financial Reporting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Financial Reporting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2308/jfr-2021-023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Reporting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2308/jfr-2021-023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1

摘要

会计研究经常通过在回归中包含一个交互项X × M来检验X和Y之间的关系是否随调节变量M而变化。我们提供了简单的英语指导,说明为什么、如何以及何时在交互测试中使用控制变量Z。仿真和简单描述演示了交互控制如何影响系数估计和解释。特别是,我们证明了在没有伴随的X × Z和/或M × Z相互作用的情况下控制Z通常不能消除Z对X × M的混杂效应。我们的结论为未来的研究提供了指导。数据可用性:本文中生成模拟的Stata代码是可用的,如文本中的链接。JEL分类:M40;M41;C01;C18。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control Variables in Interactive Models
Accounting studies often examine whether the relation between X and Y varies with a moderating variable, M, by including an interactive term, X × M, in a regression. We provide plain-English guidance on why, how, and when to use control variables, Z, in interaction tests. A simulation and simple descriptions demonstrate how interacted controls affect coefficient estimates and interpretations. In particular, we demonstrate how controlling for Z without an accompanying interaction of X × Z and/or M × Z generally does not eliminate the confounding effect of Z on X × M. We conclude with guidance for future research. Data Availability: Stata code to produce the simulations in this paper is available, as linked in the text. JEL Classifications: M40; M41; C01; C18.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Financial Reporting
Journal of Financial Reporting BUSINESS, FINANCE-
自引率
6.70%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信