无限snark族的全着色与公平全着色

M. Palma, Isabel Gonçalves, D. Sasaki, Simone Dantas
{"title":"无限snark族的全着色与公平全着色","authors":"M. Palma, Isabel Gonçalves, D. Sasaki, Simone Dantas","doi":"10.1051/ro/2023129","DOIUrl":null,"url":null,"abstract":"We show that all members of the SemiBlowup, Blowup and the first Loupekine snark families have equitable total chromatic number equal to 4. These results provide evidence of negative answers for the questions proposed: by Cavicchioli et al. (2003) about the smallest order of a Type 2 snark of girth at least 5; and by Dantas et al. (2016) about the existence of Type 1 cubic graph with girth at least 5 and equitable total chromatic number 5. Moreover, we show new infinite families of snarks obtained by the Kochol superpositions that are Type 1.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":"227 1","pages":"2619-2637"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On total coloring and equitable total coloring of infinite snark families\",\"authors\":\"M. Palma, Isabel Gonçalves, D. Sasaki, Simone Dantas\",\"doi\":\"10.1051/ro/2023129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that all members of the SemiBlowup, Blowup and the first Loupekine snark families have equitable total chromatic number equal to 4. These results provide evidence of negative answers for the questions proposed: by Cavicchioli et al. (2003) about the smallest order of a Type 2 snark of girth at least 5; and by Dantas et al. (2016) about the existence of Type 1 cubic graph with girth at least 5 and equitable total chromatic number 5. Moreover, we show new infinite families of snarks obtained by the Kochol superpositions that are Type 1.\",\"PeriodicalId\":20872,\"journal\":{\"name\":\"RAIRO Oper. Res.\",\"volume\":\"227 1\",\"pages\":\"2619-2637\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ro/2023129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了SemiBlowup, Blowup和第一Loupekine snark族的所有成员都有公平的总色数等于4。这些结果为Cavicchioli等人(2003)提出的问题提供了否定答案的证据:关于周长至少为5的2型蛇的最小阶;以及Dantas等人(2016)关于周长至少为5且总色数为5的1型三次图的存在性。此外,我们还展示了由Kochol叠加得到的一类新的无限族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On total coloring and equitable total coloring of infinite snark families
We show that all members of the SemiBlowup, Blowup and the first Loupekine snark families have equitable total chromatic number equal to 4. These results provide evidence of negative answers for the questions proposed: by Cavicchioli et al. (2003) about the smallest order of a Type 2 snark of girth at least 5; and by Dantas et al. (2016) about the existence of Type 1 cubic graph with girth at least 5 and equitable total chromatic number 5. Moreover, we show new infinite families of snarks obtained by the Kochol superpositions that are Type 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信