A. Crepaldi, M. Puppin, D. Gosálbez-Martínez, L. Moreschini, F. Cilento, H. Berger, O. Yazyev, M. Chergui, M. Grioni
{"title":"Weyl电荷密度波化合物(TaSe4)2I的光诱导能带结构变化","authors":"A. Crepaldi, M. Puppin, D. Gosálbez-Martínez, L. Moreschini, F. Cilento, H. Berger, O. Yazyev, M. Chergui, M. Grioni","doi":"10.1088/2515-7639/ac9647","DOIUrl":null,"url":null,"abstract":"Collective modes are responsible for the emergence of novel quantum phases in topological materials. In the quasi-one dimensional (1D) Weyl semimetal (TaSe4)2I , a charge density wave (CDW) opens band gaps at the Weyl points, thus turning the system into an axionic insulator. Melting the CDW would restore the Weyl phase, but 1D fluctuations extend the gapped regime far above the 3D transition temperature (T CDW = 263 K), thus preventing the investigation of this topological phase transition with conventional spectroscopic methods. Here we use a non-equilibrium approach: we perturb the CDW phase by photoexcitation, and we monitor the dynamical evolution of the band structure by time- and angle-resolved photoelectron spectroscopy. We find that, upon optical excitation, electrons populate the linearly dispersing states at the Fermi level (E F ), and fill the CDW gap. The dynamics of both the charge carrier population and the band gap renormalization (BGR) show a fast component with a characteristic time scale of a few hundreds femtoseconds. However, the BGR also exhibits a second slow component on the µs time scale. The combination of an ultrafast response and of persistent changes in the spectral weight at E F , and the resulting sensitivity of the linearly dispersing states to optical excitations, may explain the high performances of (TaSe4)2I as a material for broadband infrared photodetectors.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"33 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optically induced changes in the band structure of the Weyl charge-density-wave compound (TaSe4)2I\",\"authors\":\"A. Crepaldi, M. Puppin, D. Gosálbez-Martínez, L. Moreschini, F. Cilento, H. Berger, O. Yazyev, M. Chergui, M. Grioni\",\"doi\":\"10.1088/2515-7639/ac9647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collective modes are responsible for the emergence of novel quantum phases in topological materials. In the quasi-one dimensional (1D) Weyl semimetal (TaSe4)2I , a charge density wave (CDW) opens band gaps at the Weyl points, thus turning the system into an axionic insulator. Melting the CDW would restore the Weyl phase, but 1D fluctuations extend the gapped regime far above the 3D transition temperature (T CDW = 263 K), thus preventing the investigation of this topological phase transition with conventional spectroscopic methods. Here we use a non-equilibrium approach: we perturb the CDW phase by photoexcitation, and we monitor the dynamical evolution of the band structure by time- and angle-resolved photoelectron spectroscopy. We find that, upon optical excitation, electrons populate the linearly dispersing states at the Fermi level (E F ), and fill the CDW gap. The dynamics of both the charge carrier population and the band gap renormalization (BGR) show a fast component with a characteristic time scale of a few hundreds femtoseconds. However, the BGR also exhibits a second slow component on the µs time scale. The combination of an ultrafast response and of persistent changes in the spectral weight at E F , and the resulting sensitivity of the linearly dispersing states to optical excitations, may explain the high performances of (TaSe4)2I as a material for broadband infrared photodetectors.\",\"PeriodicalId\":16520,\"journal\":{\"name\":\"Journal of Nonlinear Optical Physics & Materials\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Optical Physics & Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7639/ac9647\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/ac9647","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Optically induced changes in the band structure of the Weyl charge-density-wave compound (TaSe4)2I
Collective modes are responsible for the emergence of novel quantum phases in topological materials. In the quasi-one dimensional (1D) Weyl semimetal (TaSe4)2I , a charge density wave (CDW) opens band gaps at the Weyl points, thus turning the system into an axionic insulator. Melting the CDW would restore the Weyl phase, but 1D fluctuations extend the gapped regime far above the 3D transition temperature (T CDW = 263 K), thus preventing the investigation of this topological phase transition with conventional spectroscopic methods. Here we use a non-equilibrium approach: we perturb the CDW phase by photoexcitation, and we monitor the dynamical evolution of the band structure by time- and angle-resolved photoelectron spectroscopy. We find that, upon optical excitation, electrons populate the linearly dispersing states at the Fermi level (E F ), and fill the CDW gap. The dynamics of both the charge carrier population and the band gap renormalization (BGR) show a fast component with a characteristic time scale of a few hundreds femtoseconds. However, the BGR also exhibits a second slow component on the µs time scale. The combination of an ultrafast response and of persistent changes in the spectral weight at E F , and the resulting sensitivity of the linearly dispersing states to optical excitations, may explain the high performances of (TaSe4)2I as a material for broadband infrared photodetectors.
期刊介绍:
This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.