里奇流的稳定长度函数

J. Jordan
{"title":"里奇流的稳定长度函数","authors":"J. Jordan","doi":"10.1090/proc/15202","DOIUrl":null,"url":null,"abstract":"A fundamental step in the analysis of singularities of Ricci flow was the discovery by Perelman of a monotonic volume quantity which detected shrinking solitons in (arXiv:math/0211159). A similar quantity was found by Feldman, Ilmanen, and Ni in 2005 which detected expanding solitons. The current work introduces a modified length functional as a first step towards a steady soliton monotonicity formula. This length functional generates a distance function in the usual way which is shown to satisfy several differential inequalities which saturate precisely on manifolds satisfying a modification of the steady soliton equation.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"54 5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A steady length function for Ricci flows\",\"authors\":\"J. Jordan\",\"doi\":\"10.1090/proc/15202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fundamental step in the analysis of singularities of Ricci flow was the discovery by Perelman of a monotonic volume quantity which detected shrinking solitons in (arXiv:math/0211159). A similar quantity was found by Feldman, Ilmanen, and Ni in 2005 which detected expanding solitons. The current work introduces a modified length functional as a first step towards a steady soliton monotonicity formula. This length functional generates a distance function in the usual way which is shown to satisfy several differential inequalities which saturate precisely on manifolds satisfying a modification of the steady soliton equation.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"54 5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/15202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

里奇流奇点分析的一个基本步骤是佩雷尔曼发现了一个单调体积量,它可以探测到(arXiv:math/0211159)中的收缩孤子。2005年,Feldman, Ilmanen和Ni也发现了类似的数量,他们探测到了膨胀的孤子。目前的工作引入了一个修正的长度泛函,作为迈向稳定孤子单调性公式的第一步。这个长度泛函以通常的方式产生一个距离函数,该函数被证明满足几个微分不等式,这些微分不等式精确地饱和于满足稳态孤子方程修正的流形上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A steady length function for Ricci flows
A fundamental step in the analysis of singularities of Ricci flow was the discovery by Perelman of a monotonic volume quantity which detected shrinking solitons in (arXiv:math/0211159). A similar quantity was found by Feldman, Ilmanen, and Ni in 2005 which detected expanding solitons. The current work introduces a modified length functional as a first step towards a steady soliton monotonicity formula. This length functional generates a distance function in the usual way which is shown to satisfy several differential inequalities which saturate precisely on manifolds satisfying a modification of the steady soliton equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信