支持转换的前提条件推理

IF 1.4 2区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Bishoksan Kafle, G. Gange, Peter James Stuckey, P. Schachte, H. Søndergaard
{"title":"支持转换的前提条件推理","authors":"Bishoksan Kafle, G. Gange, Peter James Stuckey, P. Schachte, H. Søndergaard","doi":"10.1017/S1471068421000272","DOIUrl":null,"url":null,"abstract":"\n Precondition inference is a non-trivial problem with important applications in program analysis and verification. We present a novel iterative method for automatically deriving preconditions for the safety and unsafety of programs. Each iteration maintains over-approximations of the set of safe and unsafe initial states, which are used to partition the program’s initial states into those known to be safe, known to be unsafe and unknown. We then construct revised programs with those unknown initial states and iterate the procedure until the approximations are disjoint or some termination criteria are met. An experimental evaluation of the method on a set of software verification benchmarks shows that it can infer precise preconditions (sometimes optimal) that are not possible using previous methods.","PeriodicalId":49436,"journal":{"name":"Theory and Practice of Logic Programming","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformation-Enabled Precondition Inference\",\"authors\":\"Bishoksan Kafle, G. Gange, Peter James Stuckey, P. Schachte, H. Søndergaard\",\"doi\":\"10.1017/S1471068421000272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Precondition inference is a non-trivial problem with important applications in program analysis and verification. We present a novel iterative method for automatically deriving preconditions for the safety and unsafety of programs. Each iteration maintains over-approximations of the set of safe and unsafe initial states, which are used to partition the program’s initial states into those known to be safe, known to be unsafe and unknown. We then construct revised programs with those unknown initial states and iterate the procedure until the approximations are disjoint or some termination criteria are met. An experimental evaluation of the method on a set of software verification benchmarks shows that it can infer precise preconditions (sometimes optimal) that are not possible using previous methods.\",\"PeriodicalId\":49436,\"journal\":{\"name\":\"Theory and Practice of Logic Programming\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory and Practice of Logic Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/S1471068421000272\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Practice of Logic Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S1471068421000272","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

前提推理是一个重要的问题,在程序分析和验证中有着重要的应用。我们提出了一种新的迭代方法来自动推导程序的安全性和不安全性的前提条件。每次迭代维护安全和不安全初始状态集合的过近似值,这些初始状态用于将程序的初始状态划分为已知的安全状态、已知的不安全状态和未知状态。然后,我们用这些未知的初始状态构造修正程序,并迭代该过程,直到逼近不相交或满足某些终止条件。在一组软件验证基准上对该方法进行的实验评估表明,它可以推断出使用以前的方法不可能实现的精确前提条件(有时是最优的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformation-Enabled Precondition Inference
Precondition inference is a non-trivial problem with important applications in program analysis and verification. We present a novel iterative method for automatically deriving preconditions for the safety and unsafety of programs. Each iteration maintains over-approximations of the set of safe and unsafe initial states, which are used to partition the program’s initial states into those known to be safe, known to be unsafe and unknown. We then construct revised programs with those unknown initial states and iterate the procedure until the approximations are disjoint or some termination criteria are met. An experimental evaluation of the method on a set of software verification benchmarks shows that it can infer precise preconditions (sometimes optimal) that are not possible using previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory and Practice of Logic Programming
Theory and Practice of Logic Programming 工程技术-计算机:理论方法
CiteScore
4.50
自引率
21.40%
发文量
40
审稿时长
>12 weeks
期刊介绍: Theory and Practice of Logic Programming emphasises both the theory and practice of logic programming. Logic programming applies to all areas of artificial intelligence and computer science and is fundamental to them. Among the topics covered are AI applications that use logic programming, logic programming methodologies, specification, analysis and verification of systems, inductive logic programming, multi-relational data mining, natural language processing, knowledge representation, non-monotonic reasoning, semantic web reasoning, databases, implementations and architectures and constraint logic programming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信