{"title":"不确定数据上排序和窗口查询的确定和可能答案的有效逼近(扩展版)","authors":"Su Feng, Boris Glavic, Oliver Kennedy","doi":"10.48550/arXiv.2302.08676","DOIUrl":null,"url":null,"abstract":"Uncertainty arises naturally in many application domains due to, e.g., data entry errors and ambiguity in data cleaning. Prior work in incomplete and probabilistic databases has investigated the semantics and efficient evaluation of ranking and top-k queries over uncertain data. However, most approaches deal with top-k and ranking in isolation and do represent uncertain input data and query results using separate, incompatible data models. We present an efficient approach for under- and over-approximating results of ranking, top-k, and window queries over uncertain data. Our approach integrates well with existing techniques for querying uncertain data, is efficient, and is to the best of our knowledge the first to support windowed aggregation. We design algorithms for physical operators for uncertain sorting and windowed aggregation, and implement them in PostgreSQL. We evaluated our approach on synthetic and real world datasets, demonstrating that it outperforms all competitors, and often produces more accurate results.","PeriodicalId":20467,"journal":{"name":"Proc. VLDB Endow.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Approximation of Certain and Possible Answers for Ranking and Window Queries over Uncertain Data (Extended version)\",\"authors\":\"Su Feng, Boris Glavic, Oliver Kennedy\",\"doi\":\"10.48550/arXiv.2302.08676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uncertainty arises naturally in many application domains due to, e.g., data entry errors and ambiguity in data cleaning. Prior work in incomplete and probabilistic databases has investigated the semantics and efficient evaluation of ranking and top-k queries over uncertain data. However, most approaches deal with top-k and ranking in isolation and do represent uncertain input data and query results using separate, incompatible data models. We present an efficient approach for under- and over-approximating results of ranking, top-k, and window queries over uncertain data. Our approach integrates well with existing techniques for querying uncertain data, is efficient, and is to the best of our knowledge the first to support windowed aggregation. We design algorithms for physical operators for uncertain sorting and windowed aggregation, and implement them in PostgreSQL. We evaluated our approach on synthetic and real world datasets, demonstrating that it outperforms all competitors, and often produces more accurate results.\",\"PeriodicalId\":20467,\"journal\":{\"name\":\"Proc. VLDB Endow.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proc. VLDB Endow.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2302.08676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. VLDB Endow.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.08676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Approximation of Certain and Possible Answers for Ranking and Window Queries over Uncertain Data (Extended version)
Uncertainty arises naturally in many application domains due to, e.g., data entry errors and ambiguity in data cleaning. Prior work in incomplete and probabilistic databases has investigated the semantics and efficient evaluation of ranking and top-k queries over uncertain data. However, most approaches deal with top-k and ranking in isolation and do represent uncertain input data and query results using separate, incompatible data models. We present an efficient approach for under- and over-approximating results of ranking, top-k, and window queries over uncertain data. Our approach integrates well with existing techniques for querying uncertain data, is efficient, and is to the best of our knowledge the first to support windowed aggregation. We design algorithms for physical operators for uncertain sorting and windowed aggregation, and implement them in PostgreSQL. We evaluated our approach on synthetic and real world datasets, demonstrating that it outperforms all competitors, and often produces more accurate results.