情境群体智能

B. Ooi, K. Tan, Quoc Trung Tran, J. Yip, Gang Chen, Zheng Jye Ling, Thi Nguyen, A. Tung, Meihui Zhang
{"title":"情境群体智能","authors":"B. Ooi, K. Tan, Quoc Trung Tran, J. Yip, Gang Chen, Zheng Jye Ling, Thi Nguyen, A. Tung, Meihui Zhang","doi":"10.1145/2674026.2674032","DOIUrl":null,"url":null,"abstract":"Most data analytics applications are industry/domain specific, e.g., predicting patients at high risk of being admitted to intensive care unit in the healthcare sector or predicting malicious SMSs in the telecommunication sector. Existing solutions are based on \"best practices\", i.e., the systems' decisions are knowledge-driven and/or data-driven. However, there are rules and exceptional cases that can only be precisely formulated and identified by subject-matter experts (SMEs) who have accumulated many years of experience. This paper envisions a more intelligent database management system (DBMS) that captures such knowledge to effectively address the industry/domain specific applications. At the core, the system is a hybrid human-machine database engine where the machine interacts with the SMEs as part of a feedback loop to gather, infer, ascertain and enhance the database knowledge and processing. We discuss the challenges towards building such a system through examples in healthcare predictive analysis -- a popular area for big data analytics.","PeriodicalId":90050,"journal":{"name":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","volume":"122 1","pages":"39-46"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Contextual crowd intelligence\",\"authors\":\"B. Ooi, K. Tan, Quoc Trung Tran, J. Yip, Gang Chen, Zheng Jye Ling, Thi Nguyen, A. Tung, Meihui Zhang\",\"doi\":\"10.1145/2674026.2674032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most data analytics applications are industry/domain specific, e.g., predicting patients at high risk of being admitted to intensive care unit in the healthcare sector or predicting malicious SMSs in the telecommunication sector. Existing solutions are based on \\\"best practices\\\", i.e., the systems' decisions are knowledge-driven and/or data-driven. However, there are rules and exceptional cases that can only be precisely formulated and identified by subject-matter experts (SMEs) who have accumulated many years of experience. This paper envisions a more intelligent database management system (DBMS) that captures such knowledge to effectively address the industry/domain specific applications. At the core, the system is a hybrid human-machine database engine where the machine interacts with the SMEs as part of a feedback loop to gather, infer, ascertain and enhance the database knowledge and processing. We discuss the challenges towards building such a system through examples in healthcare predictive analysis -- a popular area for big data analytics.\",\"PeriodicalId\":90050,\"journal\":{\"name\":\"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining\",\"volume\":\"122 1\",\"pages\":\"39-46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2674026.2674032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2674026.2674032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

大多数数据分析应用程序都是特定于行业/领域的,例如,预测医疗保健部门重症监护病房的高风险患者或预测电信部门的恶意短信。现有的解决方案基于“最佳实践”,也就是说,系统的决策是知识驱动和/或数据驱动的。然而,有些规则和例外情况只能由积累了多年经验的主题专家(sme)精确地制定和确定。本文设想了一个更智能的数据库管理系统(DBMS),它可以捕获这些知识,从而有效地处理行业/领域特定的应用程序。该系统的核心是一个混合的人机数据库引擎,其中机器与中小企业交互,作为反馈回路的一部分,以收集、推断、确定和增强数据库知识和处理。我们通过医疗预测分析(大数据分析的一个流行领域)中的例子来讨论构建这样一个系统的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contextual crowd intelligence
Most data analytics applications are industry/domain specific, e.g., predicting patients at high risk of being admitted to intensive care unit in the healthcare sector or predicting malicious SMSs in the telecommunication sector. Existing solutions are based on "best practices", i.e., the systems' decisions are knowledge-driven and/or data-driven. However, there are rules and exceptional cases that can only be precisely formulated and identified by subject-matter experts (SMEs) who have accumulated many years of experience. This paper envisions a more intelligent database management system (DBMS) that captures such knowledge to effectively address the industry/domain specific applications. At the core, the system is a hybrid human-machine database engine where the machine interacts with the SMEs as part of a feedback loop to gather, infer, ascertain and enhance the database knowledge and processing. We discuss the challenges towards building such a system through examples in healthcare predictive analysis -- a popular area for big data analytics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信