一种面向雾计算平台的分解深度训练方案

Jia Qian, M. Barzegaran
{"title":"一种面向雾计算平台的分解深度训练方案","authors":"Jia Qian, M. Barzegaran","doi":"10.1145/3453142.3493509","DOIUrl":null,"url":null,"abstract":"Legacy machine learning solutions collect user data from data sources and place computation tasks in the Cloud. Such solutions eat communication capacity and compromise privacy with possible sensitive user data leakage. These concerns are resolved by Fog computing that integrates computation and communication in Fog nodes at the edge of the network enabling and pushing intelligence closer to the machines and devices. However, pushing computational tasks to the edge of the network requires high-end Fog nodes with powerful computation resources. This paper proposes a method whose computation tasks are decomposed and distributed among all the available resources. The more resource-demanding computation is placed in the Cloud, and the remainder is mapped to the Fog nodes using migration mechanisms in Fog computing platforms. Our presented method makes use of all available resources in a Fog computing platform while protecting user privacy. Furthermore, the proposed method optimizes the network traffic such that the high-critical applications running on the Fog nodes are not negatively impacted. We have implemented the (deep) neural networks - using our proposed method and evaluated the method on MNIST and CIFAR100 as the data source for the test cases. The results show advantages of our proposed method comparing to other methods, i.e., Cloud computing and Federated Learning, with better data protection and resource utilization.","PeriodicalId":6779,"journal":{"name":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"95 1","pages":"423-431"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Decomposed Deep Training Solution for Fog Computing Platforms\",\"authors\":\"Jia Qian, M. Barzegaran\",\"doi\":\"10.1145/3453142.3493509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Legacy machine learning solutions collect user data from data sources and place computation tasks in the Cloud. Such solutions eat communication capacity and compromise privacy with possible sensitive user data leakage. These concerns are resolved by Fog computing that integrates computation and communication in Fog nodes at the edge of the network enabling and pushing intelligence closer to the machines and devices. However, pushing computational tasks to the edge of the network requires high-end Fog nodes with powerful computation resources. This paper proposes a method whose computation tasks are decomposed and distributed among all the available resources. The more resource-demanding computation is placed in the Cloud, and the remainder is mapped to the Fog nodes using migration mechanisms in Fog computing platforms. Our presented method makes use of all available resources in a Fog computing platform while protecting user privacy. Furthermore, the proposed method optimizes the network traffic such that the high-critical applications running on the Fog nodes are not negatively impacted. We have implemented the (deep) neural networks - using our proposed method and evaluated the method on MNIST and CIFAR100 as the data source for the test cases. The results show advantages of our proposed method comparing to other methods, i.e., Cloud computing and Federated Learning, with better data protection and resource utilization.\",\"PeriodicalId\":6779,\"journal\":{\"name\":\"2021 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":\"95 1\",\"pages\":\"423-431\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3453142.3493509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453142.3493509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

传统的机器学习解决方案从数据源收集用户数据,并将计算任务放在云中。这样的解决方案消耗通信容量,并可能泄露敏感的用户数据,从而损害隐私。雾计算将计算和通信集成在网络边缘的雾节点中,从而使智能更接近机器和设备,从而解决了这些问题。然而,将计算任务推到网络边缘需要具有强大计算资源的高端Fog节点。本文提出了一种将计算任务分解并分配到所有可用资源的方法。需要更多资源的计算放在云中,其余的使用雾计算平台中的迁移机制映射到雾节点。我们提出的方法在保护用户隐私的同时,充分利用了雾计算平台的所有可用资源。此外,该方法优化了网络流量,使运行在Fog节点上的关键应用程序不会受到负面影响。我们已经使用我们提出的方法实现了(深度)神经网络,并在MNIST和CIFAR100上评估了该方法作为测试用例的数据源。结果表明,与其他方法(云计算和联邦学习)相比,我们提出的方法具有更好的数据保护和资源利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Decomposed Deep Training Solution for Fog Computing Platforms
Legacy machine learning solutions collect user data from data sources and place computation tasks in the Cloud. Such solutions eat communication capacity and compromise privacy with possible sensitive user data leakage. These concerns are resolved by Fog computing that integrates computation and communication in Fog nodes at the edge of the network enabling and pushing intelligence closer to the machines and devices. However, pushing computational tasks to the edge of the network requires high-end Fog nodes with powerful computation resources. This paper proposes a method whose computation tasks are decomposed and distributed among all the available resources. The more resource-demanding computation is placed in the Cloud, and the remainder is mapped to the Fog nodes using migration mechanisms in Fog computing platforms. Our presented method makes use of all available resources in a Fog computing platform while protecting user privacy. Furthermore, the proposed method optimizes the network traffic such that the high-critical applications running on the Fog nodes are not negatively impacted. We have implemented the (deep) neural networks - using our proposed method and evaluated the method on MNIST and CIFAR100 as the data source for the test cases. The results show advantages of our proposed method comparing to other methods, i.e., Cloud computing and Federated Learning, with better data protection and resource utilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信