相对khovanov - jacobson类

IF 0.6 3区 数学 Q3 MATHEMATICS
I. Sundberg, Jonah Swann
{"title":"相对khovanov - jacobson类","authors":"I. Sundberg, Jonah Swann","doi":"10.2140/agt.2022.22.3983","DOIUrl":null,"url":null,"abstract":"To a smooth, compact, oriented, properly-embedded surface in the $4$-ball, we define an invariant of its boundary-preserving isotopy class from the Khovanov homology of its boundary link. Previous work showed that when the boundary link is empty, this invariant is determined by the genus of the surface. We show that this relative invariant: can obstruct sliceness of knots; detects a pair of slices for $9_{46}$; is not hindered by detecting connected sums with knotted $2$-spheres.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"115 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Relative Khovanov–Jacobsson classes\",\"authors\":\"I. Sundberg, Jonah Swann\",\"doi\":\"10.2140/agt.2022.22.3983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To a smooth, compact, oriented, properly-embedded surface in the $4$-ball, we define an invariant of its boundary-preserving isotopy class from the Khovanov homology of its boundary link. Previous work showed that when the boundary link is empty, this invariant is determined by the genus of the surface. We show that this relative invariant: can obstruct sliceness of knots; detects a pair of slices for $9_{46}$; is not hindered by detecting connected sums with knotted $2$-spheres.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2022.22.3983\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2022.22.3983","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

对于球面上光滑、紧致、定向、适当嵌入的曲面,我们从其边界连杆的Khovanov同调中定义了其保边同位素类的不变量。先前的研究表明,当边界连杆为空时,该不变量由曲面的属决定。我们证明了这种相对不变量可以阻碍结的切片性;检测一对$9_{46}$;不受检测有2个结球的连通和的阻碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative Khovanov–Jacobsson classes
To a smooth, compact, oriented, properly-embedded surface in the $4$-ball, we define an invariant of its boundary-preserving isotopy class from the Khovanov homology of its boundary link. Previous work showed that when the boundary link is empty, this invariant is determined by the genus of the surface. We show that this relative invariant: can obstruct sliceness of knots; detects a pair of slices for $9_{46}$; is not hindered by detecting connected sums with knotted $2$-spheres.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信