{"title":"利用图形卷积神经网络解决多标签图像分类中的过度平滑问题。","authors":"Vikas Chauhan, Aruna Tiwari, Boppudi Venkata, Vislavath Naik","doi":"10.1007/s12530-022-09463-z","DOIUrl":null,"url":null,"abstract":"<p><p>The importance of the graphical convolution network in multi-label classification has grown in recent years due to its label embedding representation capabilities. The graphical convolution network is able to capture the label dependencies using the correlation between labels. However, the graphical convolution network suffers from an over-smoothing problem when the layers are increased in the network. Over-smoothing makes the nodes indistinguishable in the deep graphical convolution network. This paper proposes a normalization technique to tackle the over-smoothing problem in the graphical convolution network for multi-label classification. The proposed approach is an efficient multi-label object classifier based on a graphical convolution neural network that tackles the over-smoothing problem. The proposed approach normalizes the output of the graph such that the total pairwise squared distance between nodes remains the same after performing the convolution operation. The proposed approach outperforms the existing state-of-the-art approaches based on the results obtained from the experiments performed on MS-COCO and VOC2007 datasets. The experimentation results show that pairnorm mitigates the effect of over-smoothing in the case of using a deep graphical convolution network.</p>","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"44 1","pages":"1-11"},"PeriodicalIF":2.7000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9451128/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tackling over-smoothing in multi-label image classification using graphical convolution neural network.\",\"authors\":\"Vikas Chauhan, Aruna Tiwari, Boppudi Venkata, Vislavath Naik\",\"doi\":\"10.1007/s12530-022-09463-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The importance of the graphical convolution network in multi-label classification has grown in recent years due to its label embedding representation capabilities. The graphical convolution network is able to capture the label dependencies using the correlation between labels. However, the graphical convolution network suffers from an over-smoothing problem when the layers are increased in the network. Over-smoothing makes the nodes indistinguishable in the deep graphical convolution network. This paper proposes a normalization technique to tackle the over-smoothing problem in the graphical convolution network for multi-label classification. The proposed approach is an efficient multi-label object classifier based on a graphical convolution neural network that tackles the over-smoothing problem. The proposed approach normalizes the output of the graph such that the total pairwise squared distance between nodes remains the same after performing the convolution operation. The proposed approach outperforms the existing state-of-the-art approaches based on the results obtained from the experiments performed on MS-COCO and VOC2007 datasets. The experimentation results show that pairnorm mitigates the effect of over-smoothing in the case of using a deep graphical convolution network.</p>\",\"PeriodicalId\":12174,\"journal\":{\"name\":\"Evolving Systems\",\"volume\":\"44 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9451128/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolving Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12530-022-09463-z\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolving Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12530-022-09463-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Tackling over-smoothing in multi-label image classification using graphical convolution neural network.
The importance of the graphical convolution network in multi-label classification has grown in recent years due to its label embedding representation capabilities. The graphical convolution network is able to capture the label dependencies using the correlation between labels. However, the graphical convolution network suffers from an over-smoothing problem when the layers are increased in the network. Over-smoothing makes the nodes indistinguishable in the deep graphical convolution network. This paper proposes a normalization technique to tackle the over-smoothing problem in the graphical convolution network for multi-label classification. The proposed approach is an efficient multi-label object classifier based on a graphical convolution neural network that tackles the over-smoothing problem. The proposed approach normalizes the output of the graph such that the total pairwise squared distance between nodes remains the same after performing the convolution operation. The proposed approach outperforms the existing state-of-the-art approaches based on the results obtained from the experiments performed on MS-COCO and VOC2007 datasets. The experimentation results show that pairnorm mitigates the effect of over-smoothing in the case of using a deep graphical convolution network.
期刊介绍:
Evolving Systems covers surveys, methodological, and application-oriented papers in the area of dynamically evolving systems. ‘Evolving systems’ are inspired by the idea of system model evolution in a dynamically changing and evolving environment. In contrast to the standard approach in machine learning, mathematical modelling and related disciplines where the model structure is assumed and fixed a priori and the problem is focused on parametric optimisation, evolving systems allow the model structure to gradually change/evolve. The aim of such continuous or life-long learning and domain adaptation is self-organization. It can adapt to new data patterns, is more suitable for streaming data, transfer learning and can recognise and learn from unknown and unpredictable data patterns. Such properties are critically important for autonomous, robotic systems that continue to learn and adapt after they are being designed (at run time).
Evolving Systems solicits publications that address the problems of all aspects of system modelling, clustering, classification, prediction and control in non-stationary, unpredictable environments and describe new methods and approaches for their design.
The journal is devoted to the topic of self-developing, self-organised, and evolving systems in its entirety — from systematic methods to case studies and real industrial applications. It covers all aspects of the methodology such as
Evolving Systems methodology
Evolving Neural Networks and Neuro-fuzzy Systems
Evolving Classifiers and Clustering
Evolving Controllers and Predictive models
Evolving Explainable AI systems
Evolving Systems applications
but also looking at new paradigms and applications, including medicine, robotics, business, industrial automation, control systems, transportation, communications, environmental monitoring, biomedical systems, security, and electronic services, finance and economics. The common features for all submitted methods and systems are the evolving nature of the systems and the environments.
The journal is encompassing contributions related to:
1) Methods of machine learning, AI, computational intelligence and mathematical modelling
2) Inspiration from Nature and Biology, including Neuroscience, Bioinformatics and Molecular biology, Quantum physics
3) Applications in engineering, business, social sciences.