{"title":"具有退化非局部非线性阻尼的梁模型","authors":"V. Narciso, F. Ekinci, E. Pişkin","doi":"10.3934/eect.2022048","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This paper contains results about the existence, uniqueness and stability of solutions for the damped nonlinear extensible beam equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ u_{tt}+\\Delta ^2u-M(\\|\\nabla u(t)\\|^2)\\Delta u+\\|\\Delta u(t)\\|^{2\\alpha}\\,|u_t|^{\\gamma}u_t = 0\\ \\mbox{ in } \\ \\Omega \\times \\mathbb{R}^+, $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\alpha>0 $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\gamma\\ge 0 $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\Omega\\subset \\mathbb{R}^n $\\end{document}</tex-math></inline-formula> is a bounded domain with smooth boundary <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\Gamma = \\partial \\Omega $\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\"M5\">\\begin{document}$ M $\\end{document}</tex-math></inline-formula> is a nonlocal function that represents beam's extensibility term. The novelty of the work is to consider the damping as a product of a degenerate and nonlocal term with a nonlinear function. This work complements the recent article by Cavalcanti et al. [<xref ref-type=\"bibr\" rid=\"b8\">8</xref>] who treated this model with degenerate nonlocal weak (and strong) damping. The main result of the work is to show that for regular initial data the energy associated with the problem proposed goes to zero when <inline-formula><tex-math id=\"M6\">\\begin{document}$ t $\\end{document}</tex-math></inline-formula> goes to infinity.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On a beam model with degenerate nonlocal nonlinear damping\",\"authors\":\"V. Narciso, F. Ekinci, E. Pişkin\",\"doi\":\"10.3934/eect.2022048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>This paper contains results about the existence, uniqueness and stability of solutions for the damped nonlinear extensible beam equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ u_{tt}+\\\\Delta ^2u-M(\\\\|\\\\nabla u(t)\\\\|^2)\\\\Delta u+\\\\|\\\\Delta u(t)\\\\|^{2\\\\alpha}\\\\,|u_t|^{\\\\gamma}u_t = 0\\\\ \\\\mbox{ in } \\\\ \\\\Omega \\\\times \\\\mathbb{R}^+, $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\alpha>0 $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ \\\\gamma\\\\ge 0 $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\Omega\\\\subset \\\\mathbb{R}^n $\\\\end{document}</tex-math></inline-formula> is a bounded domain with smooth boundary <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\Gamma = \\\\partial \\\\Omega $\\\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ M $\\\\end{document}</tex-math></inline-formula> is a nonlocal function that represents beam's extensibility term. The novelty of the work is to consider the damping as a product of a degenerate and nonlocal term with a nonlinear function. This work complements the recent article by Cavalcanti et al. [<xref ref-type=\\\"bibr\\\" rid=\\\"b8\\\">8</xref>] who treated this model with degenerate nonlocal weak (and strong) damping. The main result of the work is to show that for regular initial data the energy associated with the problem proposed goes to zero when <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ t $\\\\end{document}</tex-math></inline-formula> goes to infinity.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2022048\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2022048","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
摘要
This paper contains results about the existence, uniqueness and stability of solutions for the damped nonlinear extensible beam equation \begin{document}$ u_{tt}+\Delta ^2u-M(\|\nabla u(t)\|^2)\Delta u+\|\Delta u(t)\|^{2\alpha}\,|u_t|^{\gamma}u_t = 0\ \mbox{ in } \ \Omega \times \mathbb{R}^+, $\end{document} where \begin{document}$ \alpha>0 $\end{document}, \begin{document}$ \gamma\ge 0 $\end{document}, \begin{document}$ \Omega\subset \mathbb{R}^n $\end{document} is a bounded domain with smooth boundary \begin{document}$ \Gamma = \partial \Omega $\end{document}, and \begin{document}$ M $\end{document} is a nonlocal function that represents beam's extensibility term. The novelty of the work is to consider the damping as a product of a degenerate and nonlocal term with a nonlinear function. This work complements the recent article by Cavalcanti et al. [8] who treated this model with degenerate nonlocal weak (and strong) damping. The main result of the work is to show that for regular initial data the energy associated with the problem proposed goes to zero when \begin{document}$ t $\end{document} goes to infinity.
where \begin{document}$ \alpha>0 $\end{document}, \begin{document}$ \gamma\ge 0 $\end{document}, \begin{document}$ \Omega\subset \mathbb{R}^n $\end{document} is a bounded domain with smooth boundary \begin{document}$ \Gamma = \partial \Omega $\end{document}, and \begin{document}$ M $\end{document} is a nonlocal function that represents beam's extensibility term. The novelty of the work is to consider the damping as a product of a degenerate and nonlocal term with a nonlinear function. This work complements the recent article by Cavalcanti et al. [8] who treated this model with degenerate nonlocal weak (and strong) damping. The main result of the work is to show that for regular initial data the energy associated with the problem proposed goes to zero when \begin{document}$ t $\end{document} goes to infinity.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.